25.TF&IDF算法以及向量空间模型算法

主要知识点:

  • boolean model
  • IF/IDF
  • vector space model

一、boolean model

在es做各种搜索进行打分排序时,会先用boolean model 进行初步的筛选,boolean model类似and这种逻辑操作符,先过滤出包含指定term的doc。must/must not/should(过滤、包含、不包含 、可能包含)这几种情况,这一步不会对各个doc进行打分,只分过滤,为下一步的IF/IDF算法筛选数据。

二、TF/IDF

这一步就是es为boolean model过滤出来的doc进行打分,但是这一步也只是单个term在doc中的分数。现假如:

query: hello world

doc1: java is my favourite programming language, hello world !!!

doc2: hello java, you are very good, oh hello world!!!

hello对doc1的评分

TF: term frequency

找到hello在doc1中出现了几次,1次,会根据出现的次数给个分数

一个term在一个doc中,出现的次数越多,那么最后给的相关度评分就会越高

IDF:inversed document frequency

找到hello在所有的doc中出现的次数,3次

一个term在所有的doc中,出现的次数越多,那么最后给的相关度评分就会越低

length norm

hello搜索的那个field的长度,field长度越长,给的相关度评分越低; field长度越短,给的相关度评分越高

最后,会将hello这个term,对doc1的分数,综合TF,IDF,length norm,计算出来一个综合性的分数

3、vector space model

我们在做搜索时,搜索条件中可能会有多个term,es出来的分数结果也是对多个term的综合分数,多个term对一个doc的总分数的计算,在es中使用的是vector space model(空间向量模型),这个模型的算法很复杂,我们在使用es时不需要知道这种算法,只需要知道综合分数是由灾这种模型计算得出的就行。

25.TF&IDF算法以及向量空间模型算法

原文地址:https://www.cnblogs.com/liuqianli/p/8527702.html

时间: 2024-12-12 11:37:30

25.TF&IDF算法以及向量空间模型算法的相关文章

tf–idf算法解释及其python代码实现(下)

tf–idf算法python代码实现 这是我写的一个tf-idf的核心部分的代码,没有完整实现,当然剩下的事情就非常简单了,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四句话,每句表示一个文档 copus=['我正在学习计算机','它正在吃饭','我的书还在你那儿','今天不上班'] 由于中文需要分词,jieba分词是python里面比较好用的分词工具,所以选用jieba分词,文末是jieba的链接.首先对文档进行分词: i

tf–idf算法解释及其python代码实现(上)

tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息检索和文本挖掘中. 一个很自然的想法是在一篇文档中词频越高的词对这篇文档越重要,但同时如果这个词又在非常多的文档中出现的话可能就是很普通的词,没有多少信息,对所在文档贡献不大,例如‘的’这种停用词.所以要综合一个词在所在文档出现次数以及有多少篇文档包含这个词,如果一个词在所在文档出现次数很多同时整个

55.TF/IDF算法

主要知识点: TF/IDF算法介绍 查看es计算_source的过程及各词条的分数 查看一个document是如何被匹配到的 一.算法介绍 relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度.Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法 1.Term frequency 搜索文本中的各个词条在field文本中出现了多少次,出现次数越多,

基于位置信息的聚类算法介绍及模型选择

百度百科 聚类:将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类.由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异."物以类聚,人以群分",在自然科学和社会科学中,存在着大量的分类问题.聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法.聚类分析起源于分类学,但是聚类不等于分类.聚类与分类的不同在于,聚类所要求划分的类是未知的. 分类和聚类算法一直以来都是数据挖掘,机器学习领域的热门课题,因此产生了众多的

实现 | 朴素贝叶斯模型算法研究与实例分析

实现 | 朴素贝叶斯模型算法研究与实例分析(白宁超2018年9月4日09:03:21) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述.然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论.垃圾邮件.个人广告中获取区域倾向等几个方面进行应用,包括创建数据集.数据预处理.词集模型和词袋模型.朴素贝叶斯

LDA(主题模型算法)

LDA整体流程 先定义一些字母的含义: 文档集合D,topic集合T D中每个文档d看作一个单词序列< w1,w2,...,wn >,wi表示第i个单词,设d有n个单词.(LDA里面称之为word bag,实际上每个单词的出现位置对LDA算法无影响) D中涉及的所有不同单词组成一个大集合VOCABULARY(简称VOC) LDA以文档集合D作为输入(会有切词,去停用词,取词干等常见的预处理,略去不表),希望训练出的两个结果向量(设聚成k个Topic,VOC中共包含m个词): 对每个D中的文档d

实用性模型算法研究

数据建模十类算法 1.蒙特卡罗算法2.数据拟合.参数估计.插值等数据处理算法3.线性规划.整数规划.多元规划.二次规划等规划类4.图论算法(最短路.网络流.二分图等算法)5.动态规划.回溯搜索.分治算法.分支定界等计算机算法6.最优化理论的三大非经典算法:模拟退火法.神经网络.遗传算法7.网格算法和穷举法8.连续离散化方法9.数值分析算法10.图象处理算法 以上十类算法开篇. 实用性模型算法研究

基于RBM的判别模型/算法

参考论文: 1.A Practical Guide to Training Restricted Boltzmann Machines 2.Classification using Discriminative Restricted Boltzmann Machines 目前研究火热的深度学习中,RBM(限制玻尔兹曼机)是最为重要的一块奠基石.深度学习最为关键的预训练过程中,RBM是被当做生成模型来训练的.RBM能够很好的拟合数据的优点是其广泛应用于深度模型的关键,如果能够把RBM的这个优点应用

机器学习算法总结(七)——隐马尔科夫模型(前向后向算法、鲍姆-韦尔奇算法、维特比算法)

概率图模型是一类用图来表达变量相关关系的概率模型.它以图为表示工具,最常见的是用一个结点表示一个或一组随机变量,结点之间的变表是变量间的概率相关关系.根据边的性质不同,可以将概率图模型分为两类:一类是使用有向无环图表示变量间的依赖关系,称为有向图模型或贝叶斯网:另一类是使用无向图表示变量间的相关关系,称为无向图模型或马尔科夫网. 隐马尔科夫模型(简称HMM)是结构最简单的动态贝叶斯网,是一种著名的有向图模型,主要用于时间序数据建模,在语音识别,自然语言处理,生物信息,模式识别中有着广泛的应用,虽