Linux内存管理 (23)一个内存Oops解析

专题:Linux内存管理专题

关键词:DataAbort、fsr、pte、backtrace、stack。

 

在内存相关实际应用中,内存异常访问是一种常见的问题。

本文结合异常T32栈回溯、Oops打印以及代码,分析打印log,加深对Oops的理解,有助于快速定位问题解决问题。

1. 不同类型异常处理

当内存访问异常时,触发__dabt_svc异常向量处理,进入do_DataAbort进行处理。

从_dabt_svc到do_DataAbort流程,可以参考do_DataAbort

从do_DataAbort开始,fsr_fs()根据fsr找到fsr_info中的处理函数。

asmlinkage void __exception
do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
{
    const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
    struct siginfo info;

    if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))------------------这里根据fsr从fsr_info中找打对应的操作函数。
        return;
...
}

static inline int fsr_fs(unsigned int fsr)
{
    return (fsr & FSR_FS3_0) | (fsr & FSR_FS4) >> 6;
}

fsr_info列出了全部的错误类型,主要包括四种类型:section translation fault、page translation fault、section permission fault、page permission fault。

2. Section Translation Fault

2.1 Section Translation Fault栈信息

下面是一个Section Translation Fault错误实例的T32栈:

fsr=0x805,即100000000101,所以经过fsr_fs()处理返回值为101。

所以inf->fn即为do_translation_fault。

static struct fsr_info fsr_info[] = {
...
    { do_translation_fault,    SIGSEGV, SEGV_MAPERR,    "section translation fault"       },
    { do_bad,        SIGBUS,     0,        "external abort on linefetch"       },
    { do_page_fault,    SIGSEGV, SEGV_MAPERR,    "page translation fault"       },
...
}

可以看出此错误的栈回溯,do_DataAbort根据异常地址、fsr、pt_regs,来判断异常发生在内核还是用户空间,当前状态是用户模式还是非用户模式,fsr用于确定错误处理函数。

__dabt_svc
  ->do_DataAbort    ->do_translation_fault      ->do_bad_area        ->__do_kernel_fault          ->die

2.2 入口函数do_translation_fault

Section Translation Fault类型的错误处理函数是do_translation_fault。

static int __kprobes
do_translation_fault(unsigned long addr, unsigned int fsr,
             struct pt_regs *regs)
{
    unsigned int index;
    pgd_t *pgd, *pgd_k;
    pud_t *pud, *pud_k;
    pmd_t *pmd, *pmd_k;

    if (addr < TASK_SIZE)-------------------------------------TASK_SIZE是用户空间地址的顶部,所以do_page_fault是用户空间处理函数。
        return do_page_fault(addr, fsr, regs);

    if (user_mode(regs))--------------------------------------至此的地址都是内核空间,如果regs显式为用户空间。说明两者冲突,进入bad_area。
        goto bad_area;

    index = pgd_index(addr);

    pgd = cpu_get_pgd() + index;
    pgd_k = init_mm.pgd + index;

    if (pgd_none(*pgd_k))-------------------------------------pgd_none()返回0,所以不会进入bad_area。
        goto bad_area;
    if (!pgd_present(*pgd))
        set_pgd(pgd, *pgd_k);

    pud = pud_offset(pgd, addr);
    pud_k = pud_offset(pgd_k, addr);

    if (pud_none(*pud_k))-------------------------------------pud_none()同样返回0,不会进入bad_area。
        goto bad_area;
    if (!pud_present(*pud))
        set_pud(pud, *pud_k);

    pmd = pmd_offset(pud, addr);
    pmd_k = pmd_offset(pud_k, addr);

#ifdef CONFIG_ARM_LPAE
    /*
     * Only one hardware entry per PMD with LPAE.
     */
    index = 0;
#else
    /*
     * On ARM one Linux PGD entry contains two hardware entries (see page
     * tables layout in pgtable.h). We normally guarantee that we always
     * fill both L1 entries. But create_mapping() doesn‘t follow the rule.
     * It can create inidividual L1 entries, so here we have to call
     * pmd_none() check for the entry really corresponded to address, not
     * for the first of pair.
     */
    index = (addr >> SECTION_SHIFT) & 1;
#endif
    if (pmd_none(pmd_k[index]))------------------------------如果此时pmd_k[index]为0,则为异常进入bad_area。
        goto bad_area;

    copy_pmd(pmd, pmd_k);
    return 0;

bad_area:
    do_bad_area(addr, fsr, regs);
    return 0;
}

如果确实是异常,进入do_bad_area()进行处理。分为user_mode和非user_mode两种模式分别进行处理。

user_mode处理较简单,发送SIGSEGV信号即可。

void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
{
    struct task_struct *tsk = current;
    struct mm_struct *mm = tsk->active_mm;

    /*
     * If we are in kernel mode at this point, we
     * have no context to handle this fault with.
     */
    if (user_mode(regs))
        __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
    else        __do_kernel_fault(mm, addr, fsr, regs);
}

其它模式交给__do_kernel_fault进行处理,调用流程和打印结果如下。

2.3 内核空间Section Translation Fault处理

__do_kernel_fault的主要工作是打印pte、pt_regs、栈等信息,帮助发现问题根源,核心函数是__die。

__do_kernel_fault  ->show_pte----------------------------------------------------1
  ->die
    ->__die
      ->print_modules-------------------------------------------2      ->__show_regs---------------------------------------------3      ->dump_mem------------------------------------------------4      ->dump_backtrace------------------------------------------5      ->dump_instr----------------------------------------------6
    ->panic-----------------------------------------------------7

下面是打印结果,结合代码和打印信息进行分析如下:

<1>[153780.197326] Unable to handle kernel paging request at virtual address d8660000------0. 错误概述

<1>[153780.204406] pgd = c287c000---------------------------------------------------------------------------1. show_pte,当前pgd地址0xc287c000

<1>[153780.207183] [d8660000] *pgd=00000000-----------------------------------------------------------异常地址0xd8660000和其对应的pgd表项内容0x00000000,问题就出在这里。

<0>[153780.210845] Internal error: Oops: 805 [#1] ARM--------------------------------- ----------------0. die

<4>[153780.215362] Modules linked in:------------------------------------------------------------------------2. print_modules

<4>[153780.218475] CPU: 0    Not tainted  (3.4.110 #2)---------------------------------------------------3. __show_regs

<4>[153780.223083] PC is at __mutex_lock_slowpath+0x34/0xb8

<4>[153780.228118] LR is at dpm_prepare+0x58/0x1d0

<4>[153780.232360] pc : [<c04ad5bc>]    lr : [<c01a27a8>]    psr: 80000013

<4>[153780.232391] sp : c2d01e58  ip : 00000000  fp : c2cc6800

<4>[153780.243988] r10: c0690bfc  r9 : c0690c04  r8 : c3682c68

<4>[153780.249298] r7 : c3682c64  r6 : c2c2c000  r5 : c3682c30  r4 : c3682c64

<4>[153780.255889] r3 : d8660000  r2 : c2d01e5c  r1 : 00000000  r0 : c3682c64

<4>[153780.262512] Flags: Nzcv  IRQs on  FIQs on  Mode SVC_32  ISA ARM  Segment kernel---Nzcv大写表示置位;IRQ/FIQ都打开;处于SVC_32模式;架构是ARM;处于内核中。

<4>[153780.269866] Control: 10c5383d  Table: 2287c059  DAC: 00000015

<4>[153780.275695] -----------------------------------------------------------------------------------------------------下面大段show_extra_register_data打印pt_regs前后128字节十六进制值

<4>[153780.275695] PC: 0xc04ad53c:

<4>[153780.280120] d53c  1afffffb e3510001 0afffff6 eaffffb9 e92d4008 e5b03004 e1530000 0a000001

<4>[153780.288360] d55c  e5930008 ebee2a57 e8bd8008 e3a03001 e1901f9f e180cf93 e33c0000 1afffffb

<4>[153780.296630] d57c  e3510000 012fff1e eafffff0 e92d41f0 e24dd010 e1a0200d e1a04000 e3c23d7f

<4>[153780.304870] d59c  e3c3303f e593600c e5903008 e28d2004 e2808004 e5802008 e58d8004 e58d3008

<4>[153780.313110] d5bc  e5832000 e58d600c e3e05000 e1903f9f e1802f95 e3320000 1afffffb e3530001

<4>[153780.321350] d5dc  0a00000e e1903f9f e1802f95 e3320000 1afffffb e3530001 0a000008 e3a07002

<4>[153780.329620] d5fc  e5867000 eb000433 e1943f9f e1842f95 e3320000 1afffffb e3530001 1afffff7

<4>[153780.337860] d61c  e99d000c e5823004 e5832000 e5943004 e1580003 03a03000 05843000 e28dd010

<4>[153780.346099]

<4>[153780.346130] LR: 0xc01a2728:

<4>[153780.350524] 2728  e5812090 e587308c eaffffd2 c0690bd8 c06e4e9c c067f0e8 c0690bf4 c01a1d0c

<4>[153780.358795] 2748  c059e114 c06e4ea0 e92d4ff8 e59f81b8 e1a00008 e288a024 eb0c2bb6 e288902c

<4>[153780.367034] 2768  ea000003 e37b000b 1a00005e e1a00005 ebffda19 e5984024 e154000a 0a000054

<4>[153780.375274] 2788  e2445054 e2447020 e1a00005 ebffda09 e59f0174 eb0c2b71 e1a00007 eb0c2ba5

<4>[153780.383544] 27a8  e5543004 e2131001 0a000002 e5941014 e2911000 13a01001 e59420a4 e5d43018

<4>[153780.391784] 27c8  e3520000 e7c03011 e5c43018 0a000038 e5926000 e3560000 0a000027 e1a00005

<4>[153780.400024] 27e8  e12fff36 e1a0b000 e1a01006 e1a0200b e59f0118 ebfff983 e1a00007 eb0c2b57

<4>[153780.408264] 2808  e59f0104 eb0c2b8b e35b0000 1affffd4 e5943000 e5542004 e1540003 e3822004

<4>[153780.416534]

<4>[153780.416534] SP: 0xc2d01dd8:

<4>[153780.420959] 1dd8  c06be940 c067ccb8 0000000a c2d01df8 c00190b0 c00193f4 60000013 0000000a

<4>[153780.429199] 1df8  c04ad5bc 80000013 ffffffff c2d01e44 c3682c68 c0008cd8 c3682c64 00000000

<4>[153780.437438] 1e18  c2d01e5c d8660000 c3682c64 c3682c30 c2c2c000 c3682c64 c3682c68 c0690c04

<4>[153780.445709] 1e38  c0690bfc c2cc6800 00000000 c2d01e58 c01a27a8 c04ad5bc 80000013 ffffffff

<4>[153780.453948] 1e58  00000010 c3682c68 d8660000 c07b2f78 c3682c84 c3682c30 00000000 c3682c64

<4>[153780.462188] 1e78  c0690bd8 c01a27a8 00000000 00000002 00000000 00000003 000d6508 00000000

<4>[153780.470458] 1e98  c06d01c8 c2d00000 c2cc6800 c01a292c c06d0748 c004092c 00000003 c04b4340

<4>[153780.478698] 1eb8  00000000 000d6508 00000000 c0040d94 c06d0834 00000000 c06e6f4c c06e8f68

<4>[153780.486938]

<4>[153780.486938] FP: 0xc2cc6780:

<4>[153780.491363] 6780  00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

<4>[153780.499633] 67a0  00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

<4>[153780.507873] 67c0  00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

<4>[153780.516113] 67e0  00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

<4>[153780.524353] 6800  c06d01c8 c2cba600 00000000 ffffffff 00000001 00000000 00000000 00000000

<4>[153780.532623] 6820  00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

<4>[153780.540863] 6840  00000000 00000000 00000000 00000001 00000001 c2cc6854 c2cc6854 c2cc6800

<4>[153780.549102] 6860  00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

<4>[153780.557373]

<4>[153780.557373] R0: 0xc3682be4:

<4>[153780.561798] 2be4  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.570037] 2c04  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 00000000 00000000

<4>[153780.578277] 2c24  00000000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.586547] 2c44  d8660000 d8660000 d8660000 d8660000 d8660001 d8660000 d8660000 d8660000

<4>[153780.594787] 2c64  ffffffff d8660000 c2d01e5c d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.603027] 2c84  d8660000 c0690bfc d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.611297] 2ca4  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.619537] 2cc4  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.627777]

<4>[153780.627777] R2: 0xc2d01ddc:

<4>[153780.632202] 1ddc  c067ccb8 0000000a c2d01df8 c00190b0 c00193f4 60000013 0000000a c04ad5bc

<4>[153780.640472] 1dfc  80000013 ffffffff c2d01e44 c3682c68 c0008cd8 c3682c64 00000000 c2d01e5c

<4>[153780.648712] 1e1c  d8660000 c3682c64 c3682c30 c2c2c000 c3682c64 c3682c68 c0690c04 c0690bfc

<4>[153780.656951] 1e3c  c2cc6800 00000000 c2d01e58 c01a27a8 c04ad5bc 80000013 ffffffff 00000010

<4>[153780.665191] 1e5c  c3682c68 d8660000 c07b2f78 c3682c84 c3682c30 00000000 c3682c64 c0690bd8

<4>[153780.673461] 1e7c  c01a27a8 00000000 00000002 00000000 00000003 000d6508 00000000 c06d01c8

<4>[153780.681701] 1e9c  c2d00000 c2cc6800 c01a292c c06d0748 c004092c 00000003 c04b4340 00000000

<4>[153780.689941] 1ebc  000d6508 00000000 c0040d94 c06d0834 00000000 c06e6f4c c06e8f68 c06e6f4c

<4>[153780.698211]

<4>[153780.698211] R3: 0xd865ff80:

<4>[153780.702636] ff80  ******** ******** ******** ******** ******** ******** ******** ********

<4>[153780.710876] ffa0  ******** ******** ******** ******** ******** ******** ******** ********

<4>[153780.719116] ffc0  ******** ******** ******** ******** ******** ******** ******** ********

<4>[153780.727386] ffe0  ******** ******** ******** ******** ******** ******** ******** ********

<4>[153780.735626] 0000  ******** ******** ******** ******** ******** ******** ******** ********

<4>[153780.743865] 0020  ******** ******** ******** ******** ******** ******** ******** ********

<4>[153780.752136] 0040  ******** ******** ******** ******** ******** ******** ******** ********

<4>[153780.760375] 0060  ******** ******** ******** ******** ******** ******** ******** ********

<4>[153780.768615]

<4>[153780.768615] R4: 0xc3682be4:

<4>[153780.773040] 2be4  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.781280] 2c04  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 00000000 00000000

<4>[153780.789550] 2c24  00000000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.797790] 2c44  d8660000 d8660000 d8660000 d8660000 d8660001 d8660000 d8660000 d8660000

<4>[153780.806030] 2c64  ffffffff d8660000 c2d01e5c d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.814300] 2c84  d8660000 c0690bfc d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.822540] 2ca4  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.830780] 2cc4  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.839050]

<4>[153780.839050] R5: 0xc3682bb0:

<4>[153780.843475] 2bb0  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.851715] 2bd0  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.859954] 2bf0  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.868225] 2c10  d8660000 d8660000 d8660000 00000000 00000000 00000000 d8660000 d8660000

<4>[153780.876464] 2c30  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.884704] 2c50  d8660000 d8660001 d8660000 d8660000 d8660000 ffffffff d8660000 c2d01e5c

<4>[153780.892944] 2c70  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 c0690bfc d8660000

<4>[153780.901214] 2c90  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.909454]

<4>[153780.909454] R6: 0xc2c2bf80:

<4>[153780.913879] bf80  f0000188 000181a4 00000000 00000000 00000000 00000000 c04bb340 c06aafbc

<4>[153780.922119] bfa0  c2c2bf00 c2c2b380 00000000 c3708000 00000000 00000000 00000001 00000000

<4>[153780.930389] bfc0  00000000 c2c2bfc4 c2c2bfc4 66756208 666e695f 72a5006f 7ae75aad 5aa55aa5

<4>[153780.938629] bfe0  5aa55ac5 52a75aa0 4a255aa5 5aa45aa5 5aa55aa5 1aa54aa5 08a55ae5 42a552ad

<4>[153780.946868] c000  00000000 c2d00000 00000002 04208040 00000000 00000001 00000064 00000064

<4>[153780.955139] c020  00000064 00000000 c04b4078 00000000 00015ab9 0000bd04 00000001 00000000

<4>[153780.963378] c040  00000000 c2c2c044 c2c2c044 00000001 be05bcc5 00008bdc 02e98615 00000000

<4>[153780.971618] c060  adc99ea7 00000105 01f7d876 00000000 00000000 00000000 00000000 00000000

<4>[153780.979888]

<4>[153780.979888] R7: 0xc3682be4:

<4>[153780.984313] 2be4  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153780.992553] 2c04  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 00000000 00000000

<4>[153781.000793] 2c24  00000000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153781.009063] 2c44  d8660000 d8660000 d8660000 d8660000 d8660001 d8660000 d8660000 d8660000

<4>[153781.017303] 2c64  ffffffff d8660000 c2d01e5c d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153781.025543] 2c84  d8660000 c0690bfc d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153781.033782] 2ca4  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153781.042053] 2cc4  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153781.050292]

<4>[153781.050292] R8: 0xc3682be8:

<4>[153781.054718] 2be8  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153781.062957] 2c08  d8660000 d8660000 d8660000 d8660000 d8660000 00000000 00000000 00000000

<4>[153781.071228] 2c28  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153781.079467] 2c48  d8660000 d8660000 d8660000 d8660001 d8660000 d8660000 d8660000 ffffffff

<4>[153781.087707] 2c68  d8660000 c2d01e5c d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153781.095977] 2c88  c0690bfc d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153781.104217] 2ca8  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153781.112457] 2cc8  d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000 d8660000

<4>[153781.120727]

<4>[153781.120727] R9: 0xc0690b84:

<4>[153781.125152] 0b84  c019fcac 00000000 c05b339c 00000124 c019fc00 00000000 c05b33b0 00000124

<4>[153781.133392] 0ba4  c019fb54 00000000 c05b33d0 000001a4 c019f8b0 c019fb00 00000000 c0690bc0

<4>[153781.141632] 0bc4  c0690bc0 00000000 00000001 c0690bd0 c0690bd0 00000001 c0690bdc c0690bdc

<4>[153781.149902] 0be4  c0690be4 c0690be4 c0690bec c0690bec c0690bf4 c0690bf4 c3682c84 c283fb04

<4>[153781.158142] 0c04  c06907c4 c36b4454 c2ae03d4 c3411e44 c0690c14 c0690c14 00000000 c0690c20

<4>[153781.166381] 0c24  c0690c20 00000005 00000100 c0690c30 c0690c30 c01a5354 c05b31c8 00000000

<4>[153781.174621] 0c44  c0690cb8 00000000 00000000 c3413ac0 c01a5b3c 00000000 00000000 c01a5ae4

<4>[153781.182891] 0c64  00000000 00000000 00000000 00000000 00000000 c348bf00 0000003c c05b5d00

<4>[153781.191131]

<4>[153781.191131] R10: 0xc0690b7c:

<4>[153781.195648] 0b7c  c05b3388 00000124 c019fcac 00000000 c05b339c 00000124 c019fc00 00000000

<4>[153781.203887] 0b9c  c05b33b0 00000124 c019fb54 00000000 c05b33d0 000001a4 c019f8b0 c019fb00

<4>[153781.212158] 0bbc  00000000 c0690bc0 c0690bc0 00000000 00000001 c0690bd0 c0690bd0 00000001

<4>[153781.220397] 0bdc  c0690bdc c0690bdc c0690be4 c0690be4 c0690bec c0690bec c0690bf4 c0690bf4

<4>[153781.228637] 0bfc  c3682c84 c283fb04 c06907c4 c36b4454 c2ae03d4 c3411e44 c0690c14 c0690c14

<4>[153781.236877] 0c1c  00000000 c0690c20 c0690c20 00000005 00000100 c0690c30 c0690c30 c01a5354

<4>[153781.245147] 0c3c  c05b31c8 00000000 c0690cb8 00000000 00000000 c3413ac0 c01a5b3c 00000000

<4>[153781.253387] 0c5c  00000000 c01a5ae4 00000000 00000000 00000000 00000000 00000000 c348bf00

<0>[153781.261627] Process suspend (pid: 755, stack limit = 0xc2d00268)--------------线程名是suspend,pid是755,栈的最底部是0xc2d00268,也即sp的指针不能小于此值。

<0>[153781.267730] Stack: (0xc2d01e58 to 0xc2d02000)----------------------------------------------------------------------------------4. dump_mem,有前面可知栈的底部,8K对齐则是栈的顶部。

<0>[153781.272155] 1e40:                                                       00000010 c3682c68--------------------------------------------------从栈的底部开始dump,直到栈的顶部。

<0>[153781.280395] 1e60: d8660000 c07b2f78 c3682c84 c3682c30 00000000 c3682c64 c0690bd8 c01a27a8

<0>[153781.288635] 1e80: 00000000 00000002 00000000 00000003 000d6508 00000000 c06d01c8 c2d00000

<0>[153781.296905] 1ea0: c2cc6800 c01a292c c06d0748 c004092c 00000003 c04b4340 00000000 000d6508

<0>[153781.305145] 1ec0: 00000000 c0040d94 c06d0834 00000000 c06e6f4c c06e8f68 c06e6f4c c0690c1c

<0>[153781.313385] 1ee0: 000d6508 c06e8f68 c06e6f4c c0690c1c 000d6508 c01a5390 c067eaf0 00000000

<0>[153781.321655] 1f00: c2d01f9c c04ae1e0 00000000 c2c2c000 c067eaf0 386f67b6 1432efb3 00000000

<0>[153781.329895] 1f20: c2d01f7c c003a910 895c6980 00000000 7bb36301 00000000 00000000 895c6980

<0>[153781.338134] 1f40: 00000000 c2c2c000 c0690c2c c2cc79c0 00000000 c2cc6800 00000000 c002b7cc

<0>[153781.346405] 1f60: 00000064 c2c2c000 c067eaf0 c2cc79c0 c2cc79d4 c2d00000 c2cc79d4 00000001

<0>[153781.354644] 1f80: c06d01c8 00000002 c2cc6800 c002ba10 c06d01c4 c2cc79c0 c2cba600 c002bb28

<0>[153781.362884] 1fa0: c002ba20 c06d01c4 00000000 c341fefc c2cba600 c002ba20 00000013 00000000

<0>[153781.371124] 1fc0: 00000000 00000000 00000000 c0030144 00000000 00000000 c2cba600 00000000

<0>[153781.379394] 1fe0: c2d01fe0 c2d01fe0 c341fefc c00300c0 c0009a20 c0009a20 00000000 00000000

<4>[153781.387664] [<c04ad5bc>] (__mutex_lock_slowpath+0x34/0xb8) from [<c01a27a8>] (dpm_prepare+0x58/0x1d0)----5. dump_backtrace

<4>[153781.396942] [<c01a27a8>] (dpm_prepare+0x58/0x1d0) from [<c01a292c>] (dpm_suspend_start+0xc/0x60)

<4>[153781.405792] [<c01a292c>] (dpm_suspend_start+0xc/0x60) from [<c004092c>] (suspend_devices_and_enter+0x58/0x258)

<4>[153781.415863] [<c004092c>] (suspend_devices_and_enter+0x58/0x258) from [<c0040d94>] (pm_suspend+0x268/0x2b0)

<4>[153781.425598] [<c0040d94>] (pm_suspend+0x268/0x2b0) from [<c01a5390>] (suspend+0x3c/0xfc)--------------------dump_backtrace_entry负责打印每条信息,从右到左调用关系

<4>[153781.433654] [<c01a5390>] (suspend+0x3c/0xfc) from [<c002b7cc>] (process_one_work+0x138/0x358)

<4>[153781.442260] [<c002b7cc>] (process_one_work+0x138/0x358) from [<c002ba10>] (process_scheduled_works+0x24/0x34)

<4>[153781.452239] [<c002ba10>] (process_scheduled_works+0x24/0x34) from [<c002bb28>] (rescuer_thread+0x108/0x19c)

<4>[153781.462066] [<c002bb28>] (rescuer_thread+0x108/0x19c) from [<c0030144>] (kthread+0x84/0x90)

<4>[153781.470489] [<c0030144>] (kthread+0x84/0x90) from [<c0009a20>] (kernel_thread_exit+0x0/0x8)

<0>[153781.478881] Code: e2808004 e5802008 e58d8004 e58d3008 (e5832000) --------------------------------------------------6. dump_instr

<4>[153781.485168] ---[ end trace 352bcf684b277880 ]---------------------------------------------------------------------------------------oops_exit打印信息

<0>[153781.489746] Kernel panic - not syncing: Fatal exception---------------------------------------------------------------------------7. panic,

__do_kernel_fault主要打印pte页表内容,然后将工作交给die进行处理。

show_pte对pgd、pud、pmd、pte各项进行了检查。

/*
 * Oops.  The kernel tried to access some page that wasn‘t present.
 */
static void
__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
          struct pt_regs *regs)
{
    /*
     * Are we prepared to handle this kernel fault?
     */
    if (fixup_exception(regs))
        return;

    /*
     * No handler, we‘ll have to terminate things with extreme prejudice.
     */
    bust_spinlocks(1);
    pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
         (addr < PAGE_SIZE) ? "NULL pointer dereference" :
         "paging request", addr);-------------------------------------------用户空间地址显示"NULL pointer dereference",内核空间地址显示"paging request"。

    show_pte(mm, addr);-----------------------------------------------------打印页表项内容
    die("Oops", regs, fsr);-------------------------------------------------Oops die打印,包括modules、pt_regs、stack、backtrace、mem等信息。
    bust_spinlocks(0);
    do_exit(SIGKILL);
}

/*
 * This is useful to dump out the page tables associated with
 * ‘addr‘ in mm ‘mm‘.
 */
void show_pte(struct mm_struct *mm, unsigned long addr)
{
    pgd_t *pgd;

    if (!mm)----------------------------------------------------------------如果当前mm为NULL,表示当前进程为内核线程,mm对应init_mm。
        mm = &init_mm;

    pr_alert("pgd = %p\n", mm->pgd);----------------------------------------打印pgd地址
    pgd = pgd_offset(mm, addr);
    pr_alert("[%08lx] *pgd=%08llx",
            addr, (long long)pgd_val(*pgd));--------------------------------打印问题地址和其地址对应的pgd值,注意这里的pgd已经根据地址进行了偏移。

    do {
        pud_t *pud;
        pmd_t *pmd;
        pte_t *pte;

        if (pgd_none(*pgd))
            break;

        if (pgd_bad(*pgd)) {
            pr_cont("(bad)");
            break;
        }

        pud = pud_offset(pgd, addr);
        if (PTRS_PER_PUD != 1)
            pr_cont(", *pud=%08llx", (long long)pud_val(*pud));

        if (pud_none(*pud))
            break;

        if (pud_bad(*pud)) {
            pr_cont("(bad)");
            break;
        }
---------------------------------------------------------------------对于Linux二级页表映射,上面的判断都可以跳过。
        pmd = pmd_offset(pud, addr);
        if (PTRS_PER_PMD != 1)
            pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));

        if (pmd_none(*pmd))------------------------------------------对于Linux二级页表映射,pmd=pud=pgd,所以*pmd=*pgd。因为实例中*pgd=0x0000,所以此处break。
            break;

        if (pmd_bad(*pmd)) {-----------------------------------------pmd值第2bit必须清零,#define pmd_bad(pmd) (pmd_val(pmd) & 2)
            pr_cont("(bad)");
            break;
        }

        /* We must not map this if we have highmem enabled */
        if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
            break;

        pte = pte_offset_map(pmd, addr);
        pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
#ifndef CONFIG_ARM_LPAE
        pr_cont(", *ppte=%08llx",
               (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
#endif
        pte_unmap(pte);
    } while(0);

    pr_cont("\n");
}

die将主要工交给__die()打印信息,然后调用panic()执行halt或重启之类的操作。

void die(const char *str, struct pt_regs *regs, int err)
{
    struct thread_info *thread = current_thread_info();
    int ret;
    enum bug_trap_type bug_type = BUG_TRAP_TYPE_NONE;

    oops_enter();

    raw_spin_lock_irq(&die_lock);
    console_verbose();
    bust_spinlocks(1);
    if (!user_mode(regs))
        bug_type = report_bug(regs->ARM_pc, regs);
    if (bug_type != BUG_TRAP_TYPE_NONE)
        str = "Oops - BUG";
    ret =__die(str, err, thread, regs);

    if (regs && kexec_should_crash(thread->task))
        crash_kexec(regs);---------------------------------------加载并运行调试内核

    bust_spinlocks(0);
    add_taint(TAINT_DIE);
    raw_spin_unlock_irq(&die_lock);
    oops_exit();------------------------------------------------打印"...end trace...",表示Oops结束,进入panic阶段。

    if (in_interrupt())
        panic("Fatal exception in interrupt");
    if (panic_on_oops)
        panic("Fatal exception");
    if (ret != NOTIFY_STOP)
        do_exit(SIGSEGV);
}

__die输出module信息、ARM寄存器、dump栈、回溯栈等信息。

__show_regs将pt_regs的寄存器打印,并将前后128字节dump出来。

dump_mem将stack二进制dump出来。

dump_backtrace回溯栈并打印出对应符号表信息。

static int __die(const char *str, int err, struct pt_regs *regs)
{
    struct task_struct *tsk = current;
    static int die_counter;
    int ret;

    pr_emerg("Internal error: %s: %x [#%d]" S_PREEMPT S_SMP S_ISA "\n",
             str, err, ++die_counter);

    /* trap and error numbers are mostly meaningless on ARM */
    ret = notify_die(DIE_OOPS, str, regs, err, tsk->thread.trap_no, SIGSEGV);
    if (ret == NOTIFY_STOP)
        return 1;

    print_modules();
    __show_regs(regs);
    pr_emerg("Process %.*s (pid: %d, stack limit = 0x%p)\n",
         TASK_COMM_LEN, tsk->comm, task_pid_nr(tsk), end_of_stack(tsk));-------end_of_stack是栈的底部。

    if (!user_mode(regs) || in_interrupt()) {
        dump_mem(KERN_EMERG, "Stack: ", regs->ARM_sp,
             THREAD_SIZE + (unsigned long)task_stack_page(tsk));---------------dump的范围是当前sp指针到栈的顶部,顶部可以通过task->stack获取,大小固定。sp指向底部。
        dump_backtrace(regs, tsk);
        dump_instr(KERN_EMERG, regs);
    }

    return 0;
}

void print_modules(void)
{
    struct module *mod;
    char buf[8];

    printk(KERN_DEFAULT "Modules linked in:");
    /* Most callers should already have preempt disabled, but make sure */
    preempt_disable();
    list_for_each_entry_rcu(mod, &modules, list) {
        if (mod->state == MODULE_STATE_UNFORMED)
            continue;
        pr_cont(" %s%s", mod->name, module_flags(mod, buf));
    }
    preempt_enable();
    if (last_unloaded_module[0])
        pr_cont(" [last unloaded: %s]", last_unloaded_module);
    pr_cont("\n");
}

void __show_regs(struct pt_regs *regs)
{
    unsigned long flags;
    char buf[64];

    show_regs_print_info(KERN_DEFAULT);

    print_symbol("PC is at %s\n", instruction_pointer(regs));----------PC指针指向的函数以及偏移
    print_symbol("LR is at %s\n", regs->ARM_lr);-----------------------LR指向的函数以及偏移
    printk("pc : [<%08lx>]    lr : [<%08lx>]    psr: %08lx\n"----------打印pt_regs各寄存器值。
           "sp : %08lx  ip : %08lx  fp : %08lx\n",
        regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
        regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
    printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
        regs->ARM_r10, regs->ARM_r9,
        regs->ARM_r8);
    printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
        regs->ARM_r7, regs->ARM_r6,
        regs->ARM_r5, regs->ARM_r4);
    printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
        regs->ARM_r3, regs->ARM_r2,
        regs->ARM_r1, regs->ARM_r0);

    flags = regs->ARM_cpsr;------------------------------------------cpsr的NZCV标志位
    buf[0] = flags & PSR_N_BIT ? ‘N‘ : ‘n‘;
    buf[1] = flags & PSR_Z_BIT ? ‘Z‘ : ‘z‘;
    buf[2] = flags & PSR_C_BIT ? ‘C‘ : ‘c‘;
    buf[3] = flags & PSR_V_BIT ? ‘V‘ : ‘v‘;
    buf[4] = ‘\0‘;

#ifndef CONFIG_CPU_V7M
    printk("Flags: %s  IRQs o%s  FIQs o%s  Mode %s  ISA %s  Segment %s\n",
        buf, interrupts_enabled(regs) ? "n" : "ff",
        fast_interrupts_enabled(regs) ? "n" : "ff",
        processor_modes[processor_mode(regs)],
        isa_modes[isa_mode(regs)],
        get_fs() == get_ds() ? "kernel" : "user");
#else
    printk("xPSR: %08lx\n", regs->ARM_cpsr);
#endif

#ifdef CONFIG_CPU_CP15
    {
        unsigned int ctrl;

        buf[0] = ‘\0‘;
#ifdef CONFIG_CPU_CP15_MMU
        {
            unsigned int transbase, dac;
            asm("mrc p15, 0, %0, c2, c0\n\t"
                "mrc p15, 0, %1, c3, c0\n"
                : "=r" (transbase), "=r" (dac));
            snprintf(buf, sizeof(buf), "  Table: %08x  DAC: %08x",
                  transbase, dac);
        }
#endif
        asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));

        printk("Control: %08x%s\n", ctrl, buf);-----------------------输出MMU相关信息
    }
#endif

show_extra_register_data(regs, 128);------------------------------打印pt_regs寄存器地址的前后128字节十六进制

}

/*
 * Dump out the contents of some memory nicely...
 */
static void dump_mem(const char *lvl, const char *str, unsigned long bottom,
             unsigned long top)
{
    unsigned long first;
    mm_segment_t fs;
    int i;

    /*
     * We need to switch to kernel mode so that we can use __get_user
     * to safely read from kernel space.  Note that we now dump the
     * code first, just in case the backtrace kills us.
     */
    fs = get_fs();
    set_fs(KERNEL_DS);

    printk("%s%s(0x%08lx to 0x%08lx)\n", lvl, str, bottom, top);

    for (first = bottom & ~31; first < top; first += 32) {
        unsigned long p;
        char str[sizeof(" 12345678") * 8 + 1];

        memset(str, ‘ ‘, sizeof(str));
        str[sizeof(str) - 1] = ‘\0‘;

        for (p = first, i = 0; i < 8 && p < top; i++, p += 4) {
            if (p >= bottom && p < top) {
                unsigned long val;
                if (__get_user(val, (unsigned long *)p) == 0)
                    sprintf(str + i * 9, " %08lx", val);
                else
                    sprintf(str + i * 9, " ????????");
            }
        }
        printk("%s%04lx:%s\n", lvl, first & 0xffff, str);
    }

    set_fs(fs);
}

static inline void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk)
{
    unwind_backtrace(regs, tsk);
}

void dump_backtrace_entry(unsigned long where, unsigned long from, unsigned long frame)
  {
      #ifdef CONFIG_KALLSYMS
          printk("[<%08lx>] (%pS) from [<%08lx>] (%pS)\n", where, (void *)where, from, (void *)from);
      #else
          printk("Function entered at [<%08lx>] from [<%08lx>]\n", where, from);
      #endif


if (in_exception_text(where))
          dump_mem("", "Exception stack", frame + 4, frame + 4 + sizeof(struct pt_regs));
  }

static void dump_instr(const char *lvl, struct pt_regs *regs)
{
    unsigned long addr = instruction_pointer(regs);
    const int thumb = thumb_mode(regs);
    const int width = thumb ? 4 : 8;
    mm_segment_t fs;
    char str[sizeof("00000000 ") * 5 + 2 + 1], *p = str;
    int i;

    /*
     * We need to switch to kernel mode so that we can use __get_user
     * to safely read from kernel space.  Note that we now dump the
     * code first, just in case the backtrace kills us.
     */
    fs = get_fs();
    set_fs(KERNEL_DS);

    for (i = -4; i < 1 + !!thumb; i++) {
        unsigned int val, bad;

        if (thumb)
            bad = __get_user(val, &((u16 *)addr)[i]);
        else
            bad = __get_user(val, &((u32 *)addr)[i]);

        if (!bad)
            p += sprintf(p, i == 0 ? "(%0*x) " : "%0*x ",
                    width, val);
        else {
            p += sprintf(p, "bad PC value");
            break;
        }
    }
    printk("%sCode: %s\n", lvl, str);

    set_fs(fs);
}

panic()首先打印一条信息"Kernel panic...",然后执行一些清理操作。

最后执行panic_blink提示,执行重启操作。

void panic(const char *fmt, ...)
{
    static DEFINE_SPINLOCK(panic_lock);
    static char buf[1024];
    va_list args;
    long i, i_next = 0;
    int state = 0;

    /*
     * Disable local interrupts. This will prevent panic_smp_self_stop
     * from deadlocking the first cpu that invokes the panic, since
     * there is nothing to prevent an interrupt handler (that runs
     * after the panic_lock is acquired) from invoking panic again.
     */
    local_irq_disable();

    /*
     * It‘s possible to come here directly from a panic-assertion and
     * not have preempt disabled. Some functions called from here want
     * preempt to be disabled. No point enabling it later though...
     *
     * Only one CPU is allowed to execute the panic code from here. For
     * multiple parallel invocations of panic, all other CPUs either
     * stop themself or will wait until they are stopped by the 1st CPU
     * with smp_send_stop().
     */
    if (!spin_trylock(&panic_lock))
        panic_smp_self_stop();

    console_verbose();
    bust_spinlocks(1);
    va_start(args, fmt);
    vsnprintf(buf, sizeof(buf), fmt, args);
    va_end(args);
    printk(KERN_EMERG "Kernel panic - not syncing: %s\n",buf);----------------------panic()的最后最后一条消息
#ifdef CONFIG_DEBUG_BUGVERBOSE
    /*
     * Avoid nested stack-dumping if a panic occurs during oops processing
     */
    if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
        dump_stack();
#endif

    /*
     * If we have crashed and we have a crash kernel loaded let it handle
     * everything else.
     * Do we want to call this before we try to display a message?
     */
    crash_kexec(NULL);-------------------------------------------------------------定义CONFIG_KEXEC的情况下,加载调试内核镜像,然后执行。

    /*
     * Note smp_send_stop is the usual smp shutdown function, which
     * unfortunately means it may not be hardened to work in a panic
     * situation.
     */
    smp_send_stop();---------------------------------------------------------------关闭SMP其它核。

    kmsg_dump(KMSG_DUMP_PANIC);----------------------------------------------------执行dump_list上的dumper。

    atomic_notifier_call_chain(&panic_notifier_list, 0, buf);----------------------执行panic_notifier_list链表上的notifier。

    bust_spinlocks(0);

    if (!panic_blink)
        panic_blink = no_blink;

    if (panic_timeout > 0) {-------------------------------------------------------如果panic_timeout不为0情况下,会在若干秒过后重启。
        /*
         * Delay timeout seconds before rebooting the machine.
         * We can‘t use the "normal" timers since we just panicked.
         */
        printk(KERN_EMERG "Rebooting in %d seconds..", panic_timeout);

        for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
            touch_nmi_watchdog();
            if (i >= i_next) {
                i += panic_blink(state ^= 1);
                i_next = i + 3600 / PANIC_BLINK_SPD;
            }
            mdelay(PANIC_TIMER_STEP);
        }
    }
    if (panic_timeout != 0) {
        /*
         * This will not be a clean reboot, with everything
         * shutting down.  But if there is a chance of
         * rebooting the system it will be rebooted.
         */
        emergency_restart();--------------------------------------------------------执行重启操作。
    }
...
}

3. Section Permission Fault

4. Page Permission Fault

原文地址:https://www.cnblogs.com/arnoldlu/p/8672139.html

时间: 2024-10-07 19:14:01

Linux内存管理 (23)一个内存Oops解析的相关文章

ZigBee中内存管理(一个内存空间引发的血案)

这个Zigbee的项目好久没有写了,现在对这个项目有点陌生,好多东西都搞不懂了.今天写一个简单的无线发送小程序时,一直出问题,程序调用zstack中的AF_DataRequest函数,如下 AF_DataRequest( &Coor_Addr, &App_epDesc,                        APP_CLUSTERID_ADC,                        sizeof(ADC_Value),                        (uin

Linux内存管理学习笔记——内存寻址

最近开始想稍微深入一点地学习Linux内核,主要参考内容是<深入理解Linux内核>和<深入理解Linux内核架构>以及源码,经验有限,只能分析出有限的内容,看完这遍以后再更深入学习吧. 1,内存地址 逻辑地址:包含在机器语言中用来指定一个操作数或一条指令的地址. 线性地址:一个32位无符号数,用于直接映射物理地址 物理地址:片上引脚寻址级别的地址 2,逻辑地址->线性地址 2.1 段选择符与段寄存器 逻辑地址:段选择符(16位)+段内偏移(32位) index:在GDT或L

spark内存管理器--MemoryManager源码解析

MemoryManager内存管理器 内存管理器可以说是spark内核中最重要的基础模块之一,shuffle时的排序,rdd缓存,展开内存,广播变量,Task运行结果的存储等等,凡是需要使用内存的地方都需要向内存管理器定额申请.我认为内存管理器的主要作用是为了尽可能减小内存溢出的同时提高内存利用率.旧版本的spark的内存管理是静态内存管理器StaticMemoryManager,而新版本(应该是从1.6之后吧,记不清了)则改成了统一内存管理器UnifiedMemoryManager,同一内存管

JVM自动内存管理机制——Java内存区域(下)

一.虚拟机参数配置 在上一篇<Java自动内存管理机制--Java内存区域(上)>中介绍了有关的基础知识,这一篇主要是通过一些示例来了解有关虚拟机参数的配置. 1.Java堆参数设置 a)下面是一些简单的使用参数 其中最后一个是一个运行时参数设置的简单实例.一般-XX是系统级别的配置(日志信息,或者是配置使用什么样的垃圾回收器等等),后面跟上+表示启用.不是-XX基本上是对于应用层面的配置信息 下面是一个简单的实例:表示设置初始堆大小为5M,最大堆大小为20M,并将虚拟机的参数设置打印出来,后

内存管理--程序在内存中的分布

在多任务操作系统中的每一个进程都运行在一个属于它自己的内存沙盘中.这个沙盘就是虚拟地址空间(virtual address space). 1 32位虚拟内存布局 在32位模式下虚拟地址空间总是一个4GB的内存地址块.这些虚拟地址通过页表(page table)映射到物理内存,页表由操作系统维护并被处理器引用.每一个进程拥有一套属于它自己的页表,但是还有一个隐情.只要虚拟地址被使用,那么它就会作用于这台机器上运行的所有软件,包括内核本身.因此一部分虚拟地址必须保留给内核使用: 图 1 这并不意味

java 内存管理 —— 《Hotspot内存管理白皮书》

说明   要学习Java或者任意一门技术,我觉得最好的是从官网的资料开始学习.官网所给出的资料总是最权威最知道来龙去脉的.而Java中间,垃圾回收与内存管理是Java中非常重要的一部分.<Hotspot内存管理白皮书>是了解Java垃圾收集器最权威的文档.相比于其他的一些所谓翻译文章,本文的翻译更加准确,通顺和全面.在翻译的过程中如果出现一些问题,如果出现问题或者表述不清楚的地方,可以直接在评论区评论. 1.简介    JavaTM 2 Platform, Standard Edition (

属性与内存管理(属性与内存管理都是相互关联的)

<span style="font-size:18px;"> 属性与内存管理(属性与内存管理都是相互关联的)第一部分 一,属性: 属性是OC2.0之后出来的新语法,用来代替setter和getter方法,使用属性可以快速创建setter以及getter方法的声明,setter和getter方法的实现,另外添加了对实例变量操作的安全处理(其安全是通过内存管理实现的) setter 方法作用:为单一的实例变量重新赋值, 规范: (- 号方法)无返回值, 名字以set开头后面加上

垃圾回收GC:.Net自动内存管理 上(一)内存分配

垃圾回收GC:.Net自动内存管理 上(一)内存分配 前言 .Net下的GC完全解决了开发者跟踪内存使用以及控制释放内存的窘态.然而,你或许想要理解GC是怎么工作的.此系列文章中将会解释内存资源是怎么被合理分配及管理的,并包含非常详细的内在算法描述.同时,还将讨论GC的内存清理流程及什么时清理,怎么样强制清理. 引子 为你的应用程序实现合理的资源管理是一件困难的,乏味的工作.这可能会把你的注意力从你当前正在解决的实际问题中转移到它身上.那么,如果有一个现有的机制为开发者管理令人厌恶的内存管理,会

垃圾回收GC:.Net自己主动内存管理 上(二)内存算法

垃圾回收GC:.Net自己主动内存管理 上(二)内存算法 垃圾回收GC:.Net自己主动内存管理 上(一)内存分配 垃圾回收GC:.Net自己主动内存管理 上(二)内存算法 垃圾回收GC:.Net自己主动内存管理 上(三)终结器 前言 .Net下的GC全然攻克了开发人员跟踪内存使用以及控制释放内存的窘态.然而,你或午想要理解GC是怎么工作的.此系列文章中将会解释内存资源是怎么被合理分配及管理的,并包括很具体的内在算法描写叙述.同一时候.还将讨论GC的内存清理流程及什么时清理,怎么样强制清理. 内