CSU 1804 - 有向无环图 - [树形DP]

题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804

Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始、点 v 结束的路径)。

为了方便,点用 1,2,…,n 编号。 设 count(x,y) 表示点 x 到点 y 不同的路径数量(规定 count(x,x)=0),Bobo 想知道

除以 (10 9+7) 的余数。

其中,a i,b j 是给定的数列。

Input

输入包含不超过 15 组数据。

每组数据的第一行包含两个整数 n,m (1≤n,m≤10 5).

接下来 n 行的第 i 行包含两个整数 a i,b i (0≤a i,b i≤10 9).

最后 m 行的第 i 行包含两个整数 u i,v i,代表一条从点 u i 到 v i 的边 (1≤u i,vi≤n)。

Output对于每组数据,输出一个整数表示要求的值。Sample Input

3 3
1 1
1 1
1 1
1 2
1 3
2 3
2 2
1 0
0 2
1 2
1 2
2 1
500000000 0
0 500000000
1 2

Sample Output

4
4
250000014

题解:

首先,假如我们计算$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^n {\left( {count\left( {i,j} \right) \times a_i \times b_j } \right)} } $

这个的时候,固定一个点i,枚举j进行计算的话,就有:

$a_i \times \left[ {\sum\limits_{j = 1}^n {\left( {count\left( {i,j} \right) \times b_j } \right)} } \right]$

我们不妨设$dp\left[ i \right] = \sum\limits_{j = 1}^n {\left( {count\left( {i,j} \right) \times b_j } \right)} $

那么,最后的${\rm{ans}} = \sum\limits_{i = 1}^n {\left\{ {a_i \times \left[ {\sum\limits_{j = 1}^n {\left( {count\left( {i,j} \right) \times b_j } \right)} } \right]} \right\}} $

问题来了,状态转移方程是什么?

假设对于点i,它有K个子节点,就有:

$dp\left[ i \right] = \sum\limits_{k = 1}^K {\left( {b_k + dp\left[ k \right]} \right)} $

(根据题意无环图,则存在 Edge(i→k) 就一定不存在一条路径从k点到i点,所以计算dp[k]时就一定不会涉及到dp[i])

另外,本题如果不是有向无环图而是一棵树的话,很显然,直接从树根往下dfs计算每个节点i的dp[i]即可,

但是现在有向无环图,可能出现如下情况:

这样一来,如果主函数里单单dfs(1)或者单单dfs(2)都不能把整个图上所有节点的dp[i]都计算到,

因此要把所有in-degree[i]==0的节点i都dfs(i).

AC代码:

#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
typedef long long LL;

const LL MOD=1e9+7;
const int maxn=1e5+10;

int n,m;
int indegree[maxn];
LL a[maxn],b[maxn];
LL dp[maxn];

struct Edge{
    int u,v;
    Edge(int u,int v){this->u=u,this->v=v;}
};
vector<Edge> E;
vector<int> G[maxn];
void init(int l,int r)
{
    E.clear();
    for(int i=l;i<=r;i++) G[i].clear();
}
void addedge(int u,int v)
{
    E.push_back(Edge(u,v));
    G[u].push_back(E.size()-1);
}

LL dfs(int u)
{
    if(dp[u]!=-1) return dp[u];

    dp[u]=0;
    for(int i=0,_size=G[u].size();i<_size;i++)
    {
        Edge &e=E[G[u][i]]; int v=e.v;
        dp[u]=(dp[u]+b[v]+dfs(v))%MOD;
    }
    return dp[u];
}

int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        for(int i=1;i<=n;i++) scanf("%d%d",&a[i],&b[i]);

        init(1,n); //邻接表初始化
        memset(indegree,0,sizeof(indegree));
        for(int i=1,u,v;i<=m;i++)
        {
            scanf("%d%d",&u,&v);
            addedge(u,v);
            indegree[v]++;
        }

        memset(dp,-1,sizeof(dp));
        for(int i=1;i<=n;i++)
        {
            if(indegree[i]==0) dfs(i);
        }

        LL ans=0;
        for(int i=1;i<=n;i++) ans = ( ans + (dp[i]*a[i]) % MOD ) % MOD;

        printf("%lld\n",ans);
    }
}

原文地址:https://www.cnblogs.com/dilthey/p/8983122.html

时间: 2024-12-08 04:31:00

CSU 1804 - 有向无环图 - [树形DP]的相关文章

CSU 1804: 有向无环图 拓扑排序 图论

1804: 有向无环图 Submit Page   Summary   Time Limit: 5 Sec     Memory Limit: 128 Mb     Submitted: 716     Solved: 298 Description Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,-,n 编号. 设 count(x,y) 表示点 x 到点 y 不同的路径数量(规定 count(x,x)=0

CSU 1804: 有向无环图(拓扑排序)

http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 题意:…… 思路:对于某条路径,在遍历到某个点的时候,之前遍历过的点都可以到达它,因此在这个时候对答案的贡献就是∑(a1 + a2 + a3 + ... + ai) * bv,其中a是之前遍历到的点,v是当前遍历的点. 这样想之后就很简单了.类似于前缀和,每次遍历到一个v点,就把a[u]加给a[v],然后像平时的拓扑排序做就行了. 1 #include <bits/stdc++.h>

1804: 有向无环图

1804: 有向无环图 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 341  Solved: 152[Submit][Status][Web Board] Description Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y 不同的路径数量(规定 count(x,x)=0),Bobo 想知道

【拓扑】【宽搜】CSU 1084 有向无环图 (2016湖南省第十二届大学生计算机程序设计竞赛)

题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 题目大意: 一个有向无环图(DAG),有N个点M条有向边(N,M<=105),每个点有两个值ai,bi(ai,bi<=109),count(i,j)表示从i走到j的方案数. 求mod 109+7的值. 题目思路: [拓扑][宽搜] 首先将式子拆开,每个点I走到点J的d[j]一次就加上一次ai,这样一个点被i走到的几次就加上几次ai,相当于count(i,j)*ai,最终只要求

csu oj 1804: 有向无环图 (dfs回溯)

题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 中文题意就不说了. dfs从底到根回溯即可,看代码应该能清楚. 1 //#pragma comment(linker, "/STACK:102400000, 102400000") 2 #include <algorithm> 3 #include <iostream> 4 #include <cstdlib> 5 #include

有向无环图

1804: 有向无环图 Time Limit: 5 Sec     Memory Limit: 128 Mb     Submitted: 751     Solved: 313 Description Bobo 有一个 n 个点,m 条边的有向无环图(即对于任意点 v,不存在从点 v 开始.点 v 结束的路径). 为了方便,点用 1,2,…,n 编号. 设 count(x,y) 表示点 x 到点 y 不同的路径数量(规定 count(x,x)=0),Bobo 想知道 除以 (109+7) 的余

[转帖]MerkleDAG全面解析 一文读懂什么是默克尔有向无环图

MerkleDAG全面解析 一文读懂什么是默克尔有向无环图 2018-08-16 15:58区块链/技术 MerkleDAG作为IPFS的核心数据结构,它融合了Merkle Tree和DAG的优点,今天阿信带大家一起来探究什么是MerkleDAG,拆分解说Merkle Tree.DAG有向无环图.MerkleDAG在IPFS中的应用. MerkleDAG树形结构图 Merkle Tree Merkle Tree是由美国计算机学家Merkle于1979年申请的专利. Merkle Tree通常也被

UVA10305 Ordering Tasks(有向无环图排序--toposort) Kahn算法

题目描述:https://vjudge.net/problem/UVA-10305 题目分析: 恨水的题目,只要学了toposort就会做的,大概意思是给你n个变量,m个不等关系表示a<b,问n个数可能的关系;不如举个例子例如n=3表示3个变量我们假如他们是a,b,c现在有两个关系a<b,a<c 那么输出有两种a<b<c或者a<c<b(题目要求输出任意一种); 题目大概就这个意思,那么我们怎么做呢,我们想一想如果把变量看成点,关系看成有向边,那么就得到一个图,这个

图的邻接表表示与无环图的拓扑排序

一.  图的最常用的表示方法是邻接矩阵和邻接表. 1,邻接矩阵 邻接矩阵其实就是一个二维数组,对于每条边<u,v>,我们就令A[u][v] = 1,如果图为有权图,我们也可以令A[u][v]等于该权,这么表示的优点是非常简单,但是它的空间需求很大,如果图是稠密的,邻接矩阵是合适的表示方法,如果图是稀疏的,那这种方法就太浪费空间了,下面给出图的邻接矩阵表示例子. 2 邻接表 邻接表是图的常用储存结构之一.邻接表由表头结点和表结点两部分组成,其中图中每个顶点均对应一个存储在数组中的表头结点.如下图