机器学习算法整理(四)集成算法—随机森林模型

随机:数据采样随机,特征选择随机

(数据采样,有放回)

原文地址:https://www.cnblogs.com/douzujun/p/8386930.html

时间: 2024-10-11 20:16:43

机器学习算法整理(四)集成算法—随机森林模型的相关文章

算法整理(四):浅析快速排序的优化问题

前文介绍了快速排序的单边扫描和双边扫描,但么有做对比,今天来简单分析下. 一.单边扫描的缺点 单边扫描最大的缺点是每次都要交换,如果一个数组是 5 4 3 2 1,用单边扫描的话,则从4开始,4要和4交换一次,3要和3交换一次,依次类推,这种无意义的操作.正因此用双边扫描会更好,第一趟只需交换一次,就能得到1 4 3 2 5这样的数组.但双边扫描也是可以进一步优化的. 二.双边扫描的优化 优化一:对key值得选取应该使用随机选取的原则,而非第一个数字.意义大家都懂得. 优化二:前文的方法是挖坑法

吴裕雄 python 机器学习——集成学习随机森林RandomForestClassifier分类模型

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_classification(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 digits 数据集 digits=datasets.load_d

吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' #使用 scikit-learn 自带的一个糖尿病病人的数据集 diabetes = datasets.load_di

机器学习中的算法(1)-决策树模型组合之随机森林与GBDT

版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over-fitting,虽然有一些方法,如剪枝可以减少这种情况,但是还是不够的. 模型组合(比如

paper 56 :机器学习中的算法:决策树模型组合之随机森林(Random Forest)

周五的组会如约而至,讨论了一个比较感兴趣的话题,就是使用SVM和随机森林来训练图像,这样的目的就是 在图像特征之间建立内在的联系,这个model的训练,着实需要好好的研究一下,下面是我们需要准备的入门资料: [关于决策树的基础知识参考:http://blog.csdn.net/holybin/article/details/22914417] 在机器学习中,随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法,所以叫做随机森林.随机森林中的决策树之间是没有关联的,当测试数据进入随机森

web安全之机器学习入门——3.2 决策树与随机森林算法

目录 简介 决策树简单用法 决策树检测P0P3爆破 决策树检测FTP爆破 随机森林检测FTP爆破 简介 决策树和随机森林算法是最常见的分类算法: 决策树,判断的逻辑很多时候和人的思维非常接近. 随机森林算法,利用多棵决策树对样本进行训练并预测的一种分类器,并且其输出的类别是由个别决策树输出的类别的众数决定. 决策树简单用法 使用sklearn自带的iris数据集 # -*- coding: utf-8 -*- from sklearn.datasets import load_iris from

集成学习:随机森林.GBDT

集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < 0.5): 集成算法的成功在于保证弱分类器的多样性(Diversity).而且集成不稳定的算法也能够得到一个比较明显的性能提升 常见的集成学习思想有: Bagging Boosting Stacking Why need Ensemble Learning? 1. 弱分

机器学习实践笔记3(树和随机森林)

的优点是,在一个决策树的形式数据是easy理解.和kNN最大的缺点是数据的内在含义,不能给予. 1:这个概念很简单文字说明 决策树的类型有非常多.有CART.ID3和C4.5等.当中CART是基于基尼不纯度(Gini)的.这里不做具体解释,而ID3和C4.5都是基于信息熵的,它们两个得到的结果都是一样的.本次定义主要针对ID3算法.以下我们介绍信息熵的定义. 事件ai发生的概率用p(ai)来表示.而-log2(p(ai))表示为事件ai的不确定程度,称为ai的自信息量,sum(p(ai)*I(a

机器学习知识点查漏补缺(随机森林和extraTrees)

随机森林 对数据样本及特征随机抽取,进行多个决策树训练,防止过拟合,提高泛化能力 一般随机森林的特点: 1.有放回抽样(所以生成每棵树的时候,实际数据集会有重复), 2.以最优划分分裂 Given a standard training set D of size n, bagging generates m new training sets D_i, each of size n′, by sampling from D uniformly and with replacement. Thi