【BZOJ 3569】 DZY Loves Chinese II

题目连接:

  传送门

题解:

  先%一发大佬的题解

  考虑一个图,删除一些边以后不连通的条件为,某个联通块与外界所有连边都被删掉,而不只是生成树中一个树边与所以覆盖它的非树边(很容易举出反例)。

  那么考虑如何才能判断一个联通块与外界隔断。

  先考虑只是一棵树,那么任意割一条边都成立,那么现在我们在这棵树上加上一条边(u,v),我们发现,在(u,v)以外的树边,割一条就成立,但在(u,v)覆盖以内呢?

  如图:  

  我们发现我们可以把(u,v)与被(u,v)覆盖的任意一条边删掉,但也可以把2向外连出,且被(u,v)覆盖的边给删掉(即(1,2)、(2,3))。当我们把(2)看作一团点时我们可以发现以上条件也是成立的。

  以此类推我们可以发现被覆盖的树边删除后不再联通的条件为:1.删除其本身,同时将覆盖其的边删掉;2.删除其本身,将与其一同被覆盖的其他树边删掉。

  也就是说,产生新联通块的必要条件为:删掉一条树边的同时,与其具有相同属性的边也被删掉。

  那么这个相同属性是什么:覆盖边的属性。我们用一个数来表示覆盖边的属性,也就是说我们删除的集合要满足删除边的属性异或和为0,同时不能为空集!

  还是如上图,我们把(1,3)的边用x表示,我们给(2,3)、(1,2),即被覆盖边都打上x的标记,那么我们发现删除这三者中的任意二者都是成立的,因为x这个属性,被gank了两次,也就意味着这个覆盖边的贡献在我们删掉的边之间的联通块(假想块),与覆盖边以外的联通块隔离。

  所以我们随机一个数给非树边作为它的属性,那么删边形成新联通的条件就是删边集合中,存在一个子集(不含空集)的属性异或和为0。

代码:

 1 #include "bits/stdc++.h"
 2
 3 using namespace std;
 4
 5 inline int read() {
 6     int s=0,k=1;char ch=getchar();
 7     while (ch<‘0‘|ch>‘9‘) ch==‘-‘?k=-1:0,ch=getchar();
 8     while (ch>47&ch<=‘9‘) s=s*10+(ch^48),ch=getchar();
 9     return s*k;
10 }
11
12 const int N=5e5+10,mod=1e9;
13
14 struct edges{
15     int v;edges *last;
16 }edge[N*2],*head[N];int cnt=1;
17
18 inline void push(int u,int v){
19     edge[++cnt]=(edges){v,head[u]},head[u]=edge+cnt;
20 }
21
22 struct node {
23     int x,y,val;
24 }ed[N];
25
26 bool vis[N],used[N];int fat[N],val[N];
27
28 inline void dfs(int x,int fa){
29     vis[x]=true;
30     for (edges *i=head[x];i;i=i->last)  if(i->v!=fa&&!vis[i->v]){
31         fat[i->v]=x;used[i-edge>>1]=true;
32         dfs(i->v,x);
33     }
34 }
35
36 inline void dfs2(int x,int fa){
37     for (edges *i=head[x];i;i=i->last)  if(fat[i->v]==x){
38         dfs2(i->v,x);
39         val[x]^=val[i->v];
40         ed[i-edge>>1].val^=val[i->v];
41     }
42 }
43
44 int n,m,b[40],bin[40];
45
46 int main() {
47     srand(20000820);
48     n=read(),m=read();
49     register int i,j,k;
50     for (i=1;i<=m;++i)  ed[i].x=read(),ed[i].y=read(),push(ed[i].x,ed[i].y),push(ed[i].y,ed[i].x);
51     dfs(1,0);
52     for (i=1;i<=m;++i)  if(!used[i]){
53         int x=1ll*rand()*rand()%mod+1;
54         ed[i].val=x;
55         val[ed[i].x]^=x;
56         val[ed[i].y]^=x;
57     }
58     dfs2(1,0);
59     int Q=read(),num,x,ans=0;
60     for (i=0;i<=30;++i) bin[i]=1<<i;
61     while (Q--){
62         num=read();
63         memset(b,0,sizeof(b));
64         bool flag=true;
65         for (i=1;i<=num;++i){
66             x=read()^ans;x=ed[x].val;
67             for (j=30;~j;--j)   if(x&bin[j]){
68                 if(b[j])    x^=b[j];
69                 else    {
70                     b[j]=x;
71                     for (k=j-1;~k;--k)  if(b[k]&&(bin[k]&b[j])) b[j]^=b[k];
72                     for (k=j+1;j<=30;++j)   if(b[k]&bin[j]) b[k]^=b[j];
73                     break;
74                 }
75             }
76             if(x==0)   flag=false;
77         }
78         ans+=flag;
79         puts(flag?"Connected":"Disconnected");
80     }
81 }

原文地址:https://www.cnblogs.com/Troywar/p/8360729.html

时间: 2024-10-10 03:23:16

【BZOJ 3569】 DZY Loves Chinese II的相关文章

【BZOJ 3569】DZY Loves Chinese II 随机化+线性基

用到一个结论——[先建树,再给每个非树边一个权值,每个树边的权值为覆盖他的非树边的权值的异或和,然后如果给出的边存在一个非空子集异或和为0则不连通,否则连通](必须保证每条边的出现和消失只能由自己产生,即一个边不能由其他其他边异或得到,这就是我们随机化边权的原因) 证明:(前置性质:I.只割非树边一定不可以 II.非树边"藏"在树边里 III.非树边是在树上是简单路径 IV.对于一个连通块(只考虑树结构),"藏"在他周围树边里的非树边要么连接他与外界(只在他周围树边

【BZOJ3563/3569】DZY Loves Chinese II 线性基神题

[BZOJ3563/3569]DZY Loves Chinese II Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图,其上有N座祭坛,又有M条膴蠁边. 时而Dzy狂WA而怒发冲冠,神力外溢,遂有K条膴蠁边灰飞烟灭. 而后俟其日A50题则又令其复原.(可视为立即复原) 然若有祭坛无法相互到达,Dzy之神力便会大减,于是欲知其是否连通. Input 第

【bzoj3569】 DZY Loves Chinese II

http://www.lydsy.com/JudgeOnline/problem.php?id=3569 (题目链接) 题意 给出一个无向图,$Q$组询问,每次询问将原图断掉$C$条边后是否还连通.在线版. Solution 神思路. 我们找到这个图的任意一棵生成树,然后对于每条非树边将其的权值赋为一个随机数. 对于每条树边,我们将这条树边的权值设为所有覆盖这条树边的边权的异或和. 那么图不连通当且仅当删除一条树边和覆盖这条树边的所有边集,而由于刚才的处理一条树边和覆盖这条边的所有边集的异或和为

bzoj 3569: DZY Loves Chinese II

链接 3569: DZY Loves Chinese II 题目大意:给出一张\(n\)个点\(m\)条边的无向图,进行\(q\)次询问,问删掉某\(k\)条边后图是否联通,强制在线. \(N≤100000 \ M≤500000\ Q≤50000\ 1≤K≤15\) 先考虑一下离线怎么做: \(cdq\)分治. 首先把所有没有影响的边都建出来 分治过程: 1.把左边没有右边有的边建出来 2.分治左边 3.把并查集恢复至初始的样子 4.把右边没有左边有的边建出来 5.分治右边 虽然每次\(cdq\

[BZOJ3569]DZY Loves Chinese II(随机化+线性基)

3569: DZY Loves Chinese II Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1515  Solved: 569[Submit][Status][Discuss] Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生. 今Dzy有一魞歄图,其上有N座祭坛,又有M条膴蠁边. 时而Dzy狂WA而怒发冲冠,神力外溢,

【HDU 5647】DZY Loves Connecting(树DP)

pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Submission(s): 332    Accepted Submission(s): 112 Problem Description DZY has an unroote

BZOJ 3569 DZY Loves Chinese II 高斯消元

题目大意:给定一个[魞歄连通图],多次询问当图中某k条边消失时这个图是否联通 强制在线 我们找到这个图的任意一棵生成树 然后对于每条非树边将其的权值赋为一个随机数 对于每条树边 我们将这条树边的权值设为所有覆盖这条树边的边权的异或和 那么图不连通当且仅当删除一条树边和覆盖这条树边的所有边集 而由于刚才的处理一条树边和覆盖这条边的所有边集的异或和为零 于是问题转化成了对于给定的k条边是否存在一个边权的异或和为零的子集 果断高斯消元 由于使用了随机化所以碰撞率极低 好方法学习了...构思真是巧妙 记

BZOJ 3563 DZY Loves Chinese / BZOJ 3569 DZY Loves Chinese II 随机化+高斯消元解异或方程组

题目大意:给出一个无向图,问删掉k条边的时候,图是否联通. 思路:虽然我把这两个题放在了一起,但是其实这两个题可以用完全不同的两个解法来解决. 第一个题其实是DZY出错了...把每次的边数也异或了,那就直接用这个性质一个一个往后推就行了..最后一个暴力求一下.. 第二个题才是本意啊. 听到做法的时候我惊呆了.. 首先是将整个图中拆出一个树,那么所有边就分为树边和非树边.将所有非树边都加一个随机权值.树边的权值是所有能够覆盖它的非树边的权值的异或和. 把整个图拆开的充要条件是拆掉一条树边,同时将所

bzoj 3569 DZY Loves Chinese II 随机算法 树上倍增

题意:给你一个n个点m条边的图,有若干组询问,每次询问会选择图中的一些边删除,删除之后问此图是否联通?询问之间相互独立.此题强制在线. 思路:首先对于这张图随便求一颗生成树,对于每一条非树边,随机一个权值.树边的权值为所有覆盖这条树边的非树边的权值异或和.覆盖是指这条边是个返祖边,并且一端在父节点方向,一端在子节点方向.这样,我们选出若干条边,看一下他们异或起来是不是0,如果是0,那么相当于把一条树边和它的所有子节点方向的返祖边全部断开,那么图就不连通了. 代码: #include <bits/