描述
http://poj.org/problem?id=1269
给出两条直线,判断它们是平行,重合,还是相交,如果相交,求出交点.
分析
比较裸的一道题.学习了直线的写法(参数方程)
1 #include <cstdio> 2 #include <cmath> 3 using namespace std; 4 5 const double eps=1e-8; 6 7 struct pt{ double x,y; pt(double x=0,double y=0):x(x),y(y){} }; 8 typedef pt vt; 9 int dcmp(double x){ if(fabs(x)<eps) return 0; return x>0?1:-1; } 10 vt operator + (vt a,vt b){ return vt(a.x+b.x,a.y+b.y); } 11 vt operator - (vt a,vt b){ return vt(a.x-b.x,a.y-b.y); } 12 vt operator * (vt a,double p){ return vt(a.x*p,a.y*p); } 13 double cross(vt a,vt b){ return a.x*b.y-a.y*b.x; } 14 struct line{ 15 pt p; vt v; 16 line(){} 17 line(pt a,pt b){ p=a; v=b-a; } 18 }; 19 int line_intersection(line A,line B){ 20 if(dcmp(cross(A.v,B.v)!=0)) return -1; 21 return dcmp(cross(A.v,A.p-B.p))==0; 22 } 23 pt get_line_intersection(line A,line B){ 24 vt v=A.v,w=B.v,u=A.p-B.p; 25 double t=cross(w,u)/cross(v,w); 26 return A.p+v*t; 27 } 28 int main(){ 29 int n; 30 scanf("%d",&n); 31 puts("INTERSECTING LINES OUTPUT"); 32 while(n--){ 33 pt p[4]; line l[2]; 34 for(int i=0;i<4;i++) scanf("%lf%lf",&p[i].x,&p[i].y); 35 l[0]=line(p[0],p[1]); 36 l[1]=line(p[2],p[3]); 37 int t=line_intersection(l[0],l[1]); 38 if(t==-1){ 39 pt x=get_line_intersection(l[0],l[1]); 40 printf("POINT %.2lf %.2lf\n",x.x,x.y); 41 } 42 else if(t==1) puts("LINE"); 43 else puts("NONE"); 44 } 45 puts("END OF OUTPUT"); 46 return 0; 47 }
Intersecting Lines
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 13622 | Accepted: 6060 |
Description
We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect.
Your program will repeatedly read in four points that define two
lines in the x-y plane and determine how and where the lines intersect.
All numbers required by this problem will be reasonable, say between
-1000 and 1000.
Input
The
first line contains an integer N between 1 and 10 describing how many
pairs of lines are represented. The next N lines will each contain eight
integers. These integers represent the coordinates of four points on
the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines
represents two lines on the plane: the line through (x1,y1) and (x2,y2)
and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always
distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).
Output
There
should be N+2 lines of output. The first line of output should read
INTERSECTING LINES OUTPUT. There will then be one line of output for
each pair of planar lines represented by a line of input, describing how
the lines intersect: none, line, or point. If the intersection is a
point then your program should output the x and y coordinates of the
point, correct to two decimal places. The final line of output should
read "END OF OUTPUT".
Sample Input
5 0 0 4 4 0 4 4 0 5 0 7 6 1 0 2 3 5 0 7 6 3 -6 4 -3 2 0 2 27 1 5 18 5 0 3 4 0 1 2 2 5
Sample Output
INTERSECTING LINES OUTPUT POINT 2.00 2.00 NONE LINE POINT 2.00 5.00 POINT 1.07 2.20 END OF OUTPUT
Source