【BZOJ-1369】Gem 树形DP

1369: [Baltic2003]Gem

Time Limit: 2 Sec  Memory Limit: 64 MB
Submit: 282  Solved: 180
[Submit][Status][Discuss]

Description

给出一棵树,要求你为树上的结点标上权值,权值可以是任意的正整数 唯一的限制条件是相临的两个结点不能标上相同的权值,要求一种方案,使得整棵树的总价值最小。

Input

先给出一个数字N,代表树上有N个点,N<=10000 下面N-1行,代表两个点相连

Output

最小的总权值

Sample Input

10
7 5
1 2
1 7
8 9
4 1
9 7
5 6
10 2
9 3

Sample Output

14

HINT

Source

Solution

简单的树形DP

$dp[i][j]$表示节点$i$染颜色$j$时的最小

随便转移一下...自己一开始认为就是一层1一层2但是发现好像不对,不可能这么naive,但是又实在不知道极限是多少...

PS求路过的人教我如何证明最大为3...

Code

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
int read()
{
    int x=0,f=1; char ch=getchar();
    while (ch<‘0‘ || ch>‘9‘) {if (ch==‘-‘) f=-1; ch=getchar();}
    while (ch>=‘0‘ && ch<=‘9‘) {x=x*10+ch-‘0‘; ch=getchar();}
    return x*f;
}
#define maxn 10010
int N,ans;
struct EdgeNode{int next,to;}edge[maxn<<1];
int head[maxn],cnt;
void add(int u,int v)
{
    cnt++;
    edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].to=v;
}
void insert(int u,int v) {add(u,v); add(v,u);}
int dp[maxn][5];
void DFS(int now,int fa)
{
    for (int i=1; i<=3; i++) dp[now][i]=i;
    for (int i=head[now]; i; i=edge[i].next)
        if (edge[i].to!=fa) DFS(edge[i].to,now);
    for (int i=1; i<=3; i++)
        for (int j=head[now]; j; j=edge[j].next)
            if (edge[j].to!=fa)
                {
                    int nowc=0;
                    for (int k=1; k<=3; k++)
                        if (k!=i) nowc=nowc==0?dp[edge[j].to][k]:min(nowc,dp[edge[j].to][k]);
                    dp[now][i]+=nowc;
                }
}
int main()
{
    N=read();
    for (int u,v,i=1; i<=N-1; i++) u=read(),v=read(),insert(u,v);
    DFS(1,0);
    for (int i=1; i<=3; i++) ans=ans==0?dp[1][i]:min(ans,dp[1][i]);
    printf("%d\n",ans);
    return 0;
}
时间: 2024-11-03 21:36:59

【BZOJ-1369】Gem 树形DP的相关文章

bzoj 1131 简单树形dp

思路:随便想想就能想出来啦把...  卡了我一个vector... #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define pii pair<int,int> #define piii pair<int, pair<int,int> > using namespace std; const int

BZOJ 4753 二分+树形DP

思路: 先二分答案 f[x][j]表示在x的子树里选j个点 f[x][j+k]=max(f[x][j+k],f[x][j]+f[v[i]][k]); 初始化 x!=0 -> f[x][1]=p[x]-s[x]*mid x=0 -> f[x][0]=0 类似4033的那样转移 看似O(n^3)实际O(n^2) 加一个二分 复杂度O(能过) //By SiriusRen #include <cstdio> #include <cstring> #include <al

BZOJ 3004 吊灯 树形DP

题目大意:给定一棵树,要求将这棵树分成nk个连通块,每块大小为k,求所有可行的k 首先k一定是n的约数.(废话 然后我们有一个结论:某个k满足条件当且仅当存在nk个节点满足以每个节点为根的子树大小都是k的倍数 证明: 首先不可能存在超过nk个节点满足以每个节点为根的子树大小都是k的倍数,这是废话 首先证明必要性: 假设我们已经有了一组合法的方案,那么对于每一个连通块,我们找到这个连通块中深度最小的节点,以这个节点为根的子树大小一定是k的倍数 由于这样的节点有nk个,因此必要性得证 下面来证明充分

BZOJ 1093 最大半连通子图(强连通分量+树形DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1093 题意: 思路:(1)首先,强连通分量中的一个点若在最大半连通子图中,则必定整个连通分量中的点都在,因为都在还是满足半连通的性质而且使得节点数更多. (2)因此,求出强连通分量缩点,形成一个有向无环图,其实与树是差不多的.在这个图上DP一次即可,也就是找出最长链以及最长链的个数. vector<int> g[N],g1[N]; int n,m,mod; int dfn[N],lo

BZOJ 1924 所驼门王的宝藏(强连通分量+树形DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1924 题意: 思路:首先建立所有可达点之间的有向图.之后求强连通分量SCC,缩点重新构图.然后就是一个树,树形DP一下即可. int n,r,c; map<i64,int> mp; map<int,int> mp1,mp2; struct node { int x,y,op; }; node a[N]; int visit[N]; vector<int> V1

[BZOJ 4033] [HAOI2015] T1 【树形DP】

题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Father[i] 之间的边对答案的贡献(比如这条边对黑点对距离和的贡献就是子树内部的黑点数 * 子树外部的黑点数 * 这条边的权值). 然后DFS来求,枚举 i 的每个儿子 j,现在的 f[i][] 是包含了 [1, j-1] 子树,然后两重循环枚举范围是 [1, j - 1] 的子树总 Size 和

bzoj 3566: [SHOI2014]概率充电器 树形DP

首先普及一个概率公式 P(A+B)=P(A)+P(B)-P(AB) 题意:一些充电元件和导线构成一棵树,充电元件是否能充电有2种情况, 1.它自己有qi%的概率充电 2.与它相邻的元件通过导线给它充电(导线有p%的概率导通) 求最终充了电的元件的期望 题解:首先可以将元件能否充电分成3种情况考虑, 1.它自己给自己充好了电 2.它的儿子方向给它传送了电 3.它的父亲方向给它传送了电. 对于1,题目已经给出可以直接赋值, 对于2,可以通过一次树的深度遍历求得.pson[now]=pson[now]

BZOJ 2878([Noi2012]迷失游乐园-树形DP+环加外向树+期望DP+vector的erase)

2878: [Noi2012]迷失游乐园 Time Limit: 10 Sec  Memory Limit: 512 MBSec  Special Judge Submit: 319  Solved: 223 [Submit][Status] Description 放假了,小Z觉得呆在家里特别无聊,于是决定一个人去游乐园玩.进入游乐园后,小Z看了看游乐园的地图,发现可以将游乐园抽象成有n个景点.m条道路的无向连通图,且该图中至多有一个环(即m只可能等于n或者n-1).小Z现在所在的大门也正好是

BZOJ 2878: [Noi2012]迷失游乐园( 树形dp )

一棵树的话直接树形dp(求出往下走和往上走的期望长度). 假如是环套树, 环上的每棵树自己做一遍树形dp, 然后暴力枚举(环上的点<=20)环上每个点跑经过环上的路径就OK了. --------------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm&