刷题总结——选课(ssoj树形dp+记忆化搜索+多叉树转二叉树)

题目:

题目描述

学校实行学分制。每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分。学校开设了 N(N<300)门的选修课程,每个学生可选课程的数量 M 是给定的。学生选修了这M门课并考核通过就能获得相应的学分。
在选修课程中,有些课程可以直接选修,有些课程需要一定的基础知识,必须在选了其它的一些课程的基础上才能选修。例如《Frontpage》必须在选修了《Windows操作基础》之后才能选修。我们称《Windows操作基础》是《Frontpage》的先修课。每门课的直接先修课最多只有一门。两门课也可能存在相同的先修课。每门课都有一个课号,依次为1,2,3,…。 例如:

课号 先修课号 学分
1 1
2 1 1
3 2 3
4 3
5 2 4

表中 1 是 2 的先修课,2 是 3、4 的先修课。如果要选 3,那么 1 和 2 都一定已被选修过。

你的任务是为自己确定一个选课方案,使得你能得到的学分最多,并且必须满足先修课优先的原则。假定课程之间不存在时间上的冲突。

输入格式

输入文件的第一行包括两个整数 N、M(中间用一个空格隔开)其中 1≤N≤300,1≤M≤N。
以下N行每行代表一门课。课号依次为 1,2,…,N。每行有两个数(用一个空格隔开),第一个数为这门课先修课的课号(若不存在先修课则该项为0),第二个数为这门课的学分。学分是不超过 10 的正整数。

输出格式

输出文件只有一个数,实际所选课程的学分总数。

样例数据 1

输入  [复制]

7 4 
2 2 
0 1 
0 4 
2 1 
7 1 
7 6 
2 2

输出

13

题解:

引用ssoj官方题解:

用孩子兄弟法建树 1.对于树的一个节点,分三个域,数据域,第一个孩子域,第一个右兄弟域 2.接下来每一行读两个信息,j,s。在第i行中,j表示i的先修课程,也就是i是j的孩子 先把j之前的第一个孩子保存下来,为k,可知i和k是兄弟关系,所以k的第一个右兄弟更新为i 同时i更新为j的第一个孩子 更新第一个孩子和第一个右兄弟都用数组来模拟链表实现 建树后得到的是森林,有一些元素是森林里面的树根,还要设置一个虚拟的节点来作为这些树根的双亲, 所以建树过程要记录哪些元素是树根,不过还好,输入中已经有了提示,不用另外记录。输入中,树根的双亲都定为0 这刚好符合我们的要求,我们就把虚拟的节点设为0,同样用孩子兄弟法将森林合并为一棵树

然后用做苹果二叉树的方法来做就行了····(苹果二叉树题解见我博客)

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<cctype>
using namespace std;
const int N=305;
int val[N],brother[N],son[N],n,m;
int dp[N][N];
inline void dfs(int u,int k)
{
  if(u==0||k==0)
  {
    dp[u][k]=0;
    return;
  }
  if(dp[u][k]!=-1)  return;
  dp[u][k]=0;
  for(int i=0;i<k;i++)
  {
    dfs(son[u],i);
    dfs(brother[u],k-i-1);
    dp[u][k]=max(dp[u][k],dp[son[u]][i]+dp[brother[u]][k-i-1]+val[u]);
  }
  dfs(brother[u],k);
  dp[u][k]=max(dp[u][k],dp[brother[u]][k]);
  return;
}
int main()
{
  //freopen("a.in","r",stdin);
  memset(dp,-1,sizeof(dp));
  scanf("%d%d",&n,&m);
  int a,b;
  for(int i=1;i<=n;i++)
  {
    scanf("%d%d",&a,&b);
    val[i]=b;
    brother[i]=son[a];
    son[a]=i;
  }
  dfs(son[0],m);
  cout<<dp[son[0]][m]<<endl;
  return 0;
}
时间: 2024-12-25 01:52:30

刷题总结——选课(ssoj树形dp+记忆化搜索+多叉树转二叉树)的相关文章

刷题总结——二叉苹果树(ssoj树形dp+记忆化搜索)

题目: 题目背景 URAL:http://acm.timus.ru/problem.aspx?space=1&num=1018 题目描述 有一棵苹果树,如果树枝有分叉,一定是分 2 叉(就是说没有只有 1 个儿子的结点,这棵树共有N 个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来描述一根树枝的位置.下面是一颗有 4 个树枝的树:         2    5          \ /              3    4         

【DP】树形DP 记忆化搜索

DP中的树形DP,解决方法往往是记忆化搜索.显然,树上递推是很困难的.当然做得时候还是得把状态定义和转移方程写出来:dp[u][1/0]表示以u为根节点的树 涂(1) 或 不涂(0) 颜色的最少方案数.树上DP有两个经典问法:一条边两端至少有个一个端点涂色,问整个tree最少涂色次数:还有一种忘了...此题是前种问法. #include<cstdio> #include<cstring> #include<algorithm> using namespace std;

11782 - Optimal Cut(树形DP+记忆化搜索)

题目链接:11782 - Optimal Cut 题意:按前序遍历给定一棵满二叉树,现在有k次,可以选k个节点,获得他们的权值,有两个条件: 1.一个节点被选了,他的子节点就不能选了. 2.最终选完后,根到所有叶子的路径上,都要有一个被选的节点. 思路:树形dp,dp[u][k]代表在结点u,可以选k个节点,那么就分两种情况 选u节点,dp[u][k] = node[u]; 选子节点之和,那么就把k次分配给左右孩子,dp[u][k] = max(dp[u][k], dp[u][i], dp[u]

加分二叉树 vijos1991 NOIP2003第三题 区间DP/树形DP/记忆化搜索

描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数.不考虑它的空子树. 试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的

POJ_1088_(dp)(记忆化搜索)

滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 95792   Accepted: 36322 Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道载一个区域中最长底滑坡.区域由一个二维数组给出.数组的每个数字代表点的高度.下面是一个例子 1 2 3 4 5 16 17

[hihocoder 1033]交错和 数位dp/记忆化搜索

#1033 : 交错和 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个数 x,设它十进制展从高位到低位上的数位依次是 a0,?a1,?...,?an?-?1,定义交错和函数: f(x)?=?a0?-?a1?+?a2?-?...?+?(?-?1)n?-?1an?-?1 例如: f(3214567)?=?3?-?2?+?1?-?4?+?5?-?6?+?7?=?4 给定 输入 输入数据仅一行包含三个整数,l,?r,?k(0?≤?l?≤?r?≤?1018,?|k|

poj1664 dp记忆化搜索

http://poj.org/problem?id=1664 Description 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. Input 第一行是测试数据的数目t(0 <= t <= 20).以下每行均包含二个整数M和N,以空格分开.1<=M,N<=10. Output 对输入的每组数据M和N,用一行输出相应的K. Sample Input 1 7 3 Sample Output 8 /

UVA - 10817 Headmaster&#39;s Headache (状压dp+记忆化搜索)

题意:有M个已聘教师,N个候选老师,S个科目,已知每个老师的雇佣费和可教科目,已聘老师必须雇佣,要求每个科目至少两个老师教的情况下,最少的雇佣费用. 分析: 1.为让雇佣费尽可能少,雇佣的老师应教他所能教的所有科目. 2.已聘老师必须选,候选老师可选可不选. 3.dfs(cur, subject1, subject2)---求出在当前已选cur个老师,有一个老师教的科目状态为 subject1,有两个及以上老师教的科目状态为 subject2的情况下,最少的雇佣费用. dp[cur][subje

UVa 10817 (状压DP + 记忆化搜索) Headmaster&#39;s Headache

题意: 一共有s(s ≤ 8)门课程,有m个在职教师,n个求职教师. 每个教师有各自的工资要求,还有他能教授的课程,可以是一门或者多门. 要求在职教师不能辞退,问如何录用应聘者,才能使得每门课只少有两个老师教而且使得总工资最少. 分析: 因为s很小,所以可以用状态压缩. dp(i, s1, s2)表示考虑了前i个人,有一个人教的课程的集合为s1,至少有两个人教的集合为s2. 在递归的过程中,还有个参数s0,表示还没有人教的科目的集合. 其中m0, m1, s0, s1, s2的计算用到位运算,还