四川大学2008年数学分析考研试题

一、极限 (每小题7分,共28分)

1.$\displaystyle \lim\limits_{x\to +\infty } e^{-x}\left(1+\frac{1}{x}\right)^{x^{2}}$

2.$\displaystyle \lim\limits_{n\to \infty} ne^{\frac{1}{n}}-n^{2}\ln (1+\frac{1}{n})$

3.$\displaystyle \lim\limits_{n\to \infty}\left(n!\right)^{\frac{1}{n^{2}}}$

4.$\displaystyle \lim\limits_{x \to 0}\frac{\cos x -e^{-\frac{x^{2}}{2}}}{x^{2}[x+\ln(1-x)]}$

二、计算或证明下列各题(每小题10分,共60分) .

1.当$x\le 0$时,$f(x)=1+x^{2}$;当$x>0$时,$f(x)=xe^{-x}$.求$\displaystyle \int_{1}^{3}f(x-2)dx$.

2.设$\displaystyle f‘(2^{x})=x2^{-x},f(1)=0$,求$f(x)$.

3.计算曲面积分$\displaystyle I= \iint\limits_{S}(x+y+z)dS$,其中曲面$S=\{(x,y,z)\in R^{3}\mid
x^{2}+y^{2}+z^{2}=a^{2},z\ge 0\}$

4.计算曲线积分$\displaystyle I=\int\limits_{AmB}\left(\varphi (y) e^{x}-my\right)dx+\left(\varphi ‘(y)e^{x}-m\right)dy$.其中$\varphi (y)$、$\varphi ‘(y)$为$R$上的连续函数,$AmB$为连接点$A(1,2),B(3,4)$的任意路径(方向从A到B),但它与直线$AB$围成的区域面积为定值$P(P>0)$.

5.计算曲面积分$\displaystyle I=\iint\limits_{S}\left( x^{2} \cos \alpha +y^{2}\cos \beta +z^{2}\cos \gamma \right)dS$,其中$S$为圆锥面$x^{2}+y^{2}=z^{2},0\le z \le h,\cos \alpha ,\cos\beta ,\cos \gamma$为该曲面的外法向量$\overrightarrow{n}$的方向余弦.

6.函数$z=z(x,y)$具有二阶连续偏导且满足方程

$$q(1+q)\frac{\partial ^{2} z}{\partial x^{2}}-(1+p+q+2pq)\frac{\partial ^{2} z}{\partial x \partial y}+p(1+p)\frac{\partial ^{2} z}{\partial y^{2}}=0$$

其中$\displaystyle p=\frac{\partial z}{\partial x},q=\frac{\partial z}{\partial y}$.假设$u=x+y,v=y+z,w=x+y+z$之下,证明:

$$\displaystyle \frac{\partial ^{2} w}{\partial u\partial v}=0$$

三、(本题10分) 设$f(x)$在$[0,1]$上具有连续导数,证明:

$$\lim\limits_{n\to \infty}n\int_{0}^{1}x^{n}f(x)dx=f(1)$$

四、(本题10分) 设$f(x)$在$(a,b)$内二阶可微,证明:存在$c\in (a,b)$使得$$f(a)-2f\left(\frac{a+b}{2}\right)-f(b)=\frac{(b-a)^{2}}{4}f‘‘(c)$$

五、(本题10分) 设$f(x)$在$(a,b)$内具有连续导数且$f(a)=f(b)=0$,证明:$$\max\limits_{a\le x\le b}\left|f‘(x)\right| \ge \frac{4}{(b-a)^{2}}\int_{a}^{b}\left| f(x)\right| dx.$$

六、(本题12分) (题误)设$x>0,y>0,z>0$,证明:$$3\left(x+y+z+\frac{1}{x+y+z}\right)^{2}\le \left(x+\frac{1}{x}\right)^{2}+\left(y+\frac{1}{y}\right)^{2}+\left(z+\frac{1}{z}\right)^{2}.$$

七(本题20分) 设$f(x)$在$-\infty<x<+\infty$上有定义,在$x=0$的某领域内具有二阶连续导数,且$\displaystyle \lim\limits_{x\to 0}\frac{f(x)}{x}=a\in R$.证明:

1.若$a>0$,则级数$ \sum\limits_{n=1}^{\infty}(-1)^{n}f\left(\frac{1}{n}\right)$收敛,级数$ \sum\limits_{n=1}^{\infty}f\left(\frac{1}{n}\right)$发散.

2.若$a=0$,则级数$ \sum\limits_{n=1}^{\infty}f\left(\frac{1}{n}\right)$绝对收敛.

时间: 2024-10-26 15:30:07

四川大学2008年数学分析考研试题的相关文章

兰州大学2008年数学分析考研试题参考解答

1计算. (1) \dps{\lim_{n\to\infty} \ln\sqrt[n]{\sex{1+\frac{1}{n}} \sex{1+\frac{2}{n}} \cdots \sex{1+\frac{n}{n}} }} . 解答: \bex \mbox{原式}&=&\lim_{n\to\infty} \sed{ \frac{1}{n} \sez{\ln\sex{1+\frac{1}{n}}+\cdots+\ln \sex{1+\frac{n-1}{n}}} +\frac{\ln 2

四川大学2000年数学分析考研试题

一.(每小题10分,满分20分)求下列极限. 1.$\displaystyle \lim\limits_{x\to 0}\frac{ \displaystyle \int_{0}^{x}(1-\cos t)dt }{ \displaystyle \frac{1}{3}x^{3}} $ 2.$\displaystyle \lim\limits_{n\to \infty }\sin \frac{\pi}{n}\sum_{k=1}^{n}\frac{\cos \frac{k\pi} {n}}{ 2+\

四川大学2003年数学分析考研试题

一.(每小题10分,共20分)设$\displaystyle \lim\limits_{n\to \infty}x_{n}=a$设$\displaystyle y_{n}=\frac{x_{1}+2x_{2}+\cdot\cdot\cdot+nx_{n}}{n(n+1)}$.证明: 1.设$a$是有限数,则$\displaystyle \lim\limits_{n\to \infty}y_{n}=\frac{a}{2}$. 2.若$a=+\infty $,则$\displaystyle \lim

四川大学2006年数学分析考研试题

一.(本题满分10分)  求极限$\displaystyle \lim\limits_{n\to \infty}\left( n-\frac{1}{e^{\frac{1}{n}}-1}\right)$ 二.(本题满分15分) 设函数$f(x)$在$[0,1]$上二阶可导,满足$\displaystyle | f''(x)|\le 1,f(x)$在区间$(0,1)$内取最大值$\displaystyle \frac{1}{4}$, 证明:$| f(0)|+|f(1)| \le 1.$ 三.(本题满

四川大学2002年数学分析考研试题

一.(15分)设$\displaystyle x_{1}>0,x_{n+1}=\frac{3(1+x_{n})}{3+x_{n}}(n=1,2,\cdot \cdot \cdot)$,证明:$x_{n}$有极限,并求出极限值. 二.(15分) 设$y=f(x)$在$\displaystyle [0,+\infty)$一致连续,对任意$\displaystyle x\in[0,1],\lim\limits_{n\to \infty }(x+n)=0$,($n$为正整数), 证明:$\display

四川大学2009年数学分析考研试题

一.极限 (每小题7分,共28分) 1.$\displaystyle \lim\limits_{n\to \infty } \frac{1}{n^{2}}\sum\limits_{n=1}^{\infty}\ln \tbinom{n}{k}$ 2.$\displaystyle \lim\limits_{n\to \infty} \sin ^{2}\left(\pi \sqrt{n^{2}+n}\right)$ 3.$\displaystyle \lim\limits_{x\to 0^{+}}\f

四川大学2011年数学分析考研试题

一.计算下列极限 (每小题7分,共28分) 1.$\displaystyle \lim\limits_{n\to \infty } \sqrt{n+\sqrt{n+2\sqrt{n}}}-\sqrt{n}$. 2.$\displaystyle \lim\limits_{n\to \infty} \sum\limits_{k=1}^{2n}\frac{1}{n+k}$. 3.已知$\displaystyle \lim\limits_{x\to \infty}\left(1+\frac{1}{x}\

四川大学2010年数学分析考研试题

1.计算下列极限 (每小题7分,共28分) (1).$\displaystyle \lim\limits_{x\to 0 } \frac{\sqrt{\cos x}-\sqrt[3]{\cos x}}{\sin^{2}x}$. (2)$\displaystyle \lim\limits_{n\to \infty} \left( \frac{1^{p}+2^{p}+\cdots +n^{p}}{n^{p}}-\frac{n}{p+1}\right)$,$(p\in N,p\ge 1)$. (3)$

四川大学2004年数学分析考研试题

一.(本题满分20分)设$\displaystyle a_{1}>0,a_{2}>0,\cdot\cdot\cdot,a_{n}>0$,定义$\displaystyle f(x)=\left(\frac{a_{1}^{x}+a_{2}^{x}+\cdots+a_{n}^{x} }{n}\right)^{\frac{1}{x}}$证明: 1.$\lim\limits_{x\to 0}f(x)=\sqrt[n]{a_{1}a_{2}\cdot\cdot\cdot a_{n}}$ 2.$\li