HDU 4365——Palindrome graph——————【规律+快速幂】

Palindrome graph

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1727    Accepted Submission(s): 525

Problem Description

In addition fond of programing, Jack also loves painting. He likes to draw many interesting graphics on the paper.
One day,Jack found a new interesting graph called Palindrome graph. No matter how many times to flip or rotate 90 degrees, the palindrome graph are always unchanged.
Jack took a paper with n*n grid and K kinds of pigments.Some of the grid has been filled with color and can not be modified.Jack want to know:how many ways can he paint a palindrome graph?

Input

There are several test cases.
For each test case,there are three integer n m k(0<n<=10000,0<=m<=2000,0<k<=1000000), indicate n*n grid and k kinds of pigments.
Then follow m lines,for each line,there are 2 integer i,j.indicated that grid(i,j) (0<=i,j<n) has been filled with color.
You can suppose that jack have at least one way to paint a palindrome graph.

Output

For each case,print a integer in a line,indicate the number of ways jack can paint. The result can be very large, so print the result modulo 100 000 007.

Sample Input

3 0 2

4 2 3

1 1

3 1

Sample Output

8

3

Author

FZU

Source

2012 Multi-University Training Contest 7

题目大意:给出了回文图的定义,即前后翻转或者旋转90度不改变图的样子。给你n,m,k分别表示有n*n的格子图,有m个格子已经涂上颜色,现在有k种颜色用来涂满剩余的格子(其实并没有在题中读到这个意思,是看别人博客这么解释的),问有多少涂法。(其实题意感觉不是很清楚)。

解题思路:分析n*n的方格,我们只要分析出1/8的方格情况就行了。我们选择分析左上角上方的三角形,我们发现有1+2+3...+(n+1)/2个方格可能需要涂色。但是有m个方格已经涂了颜色,那么我们把所有可以通过转动能转到我们分析的三角形中的已涂色的格子的坐标化成在三角形中的坐标,可以先全化成左上角的大方格中,再化成上方的三角形中。对于涂色方案:k^x。k为给的涂料种数,x为左上角上方的三角形中可以任意涂色的格子个数(只要有部分格子在三角形中,该格子就算是在三角形中了)。

#include<bits/stdc++.h>
using namespace std;
const int mod=1e8+7;
typedef __int64 INT;
map<pair<int,int>,int>mp;
int Pow(INT x,int nn){
    INT ret=1;
    while(nn){
        if(nn&1)
            ret=ret*x%mod;
        x=x*x%mod;
        nn>>=1;
    }
    return ret;
}
int main(){
    int n,m,k,x,y;
    while(scanf("%d%d%d",&n,&m,&k)!=EOF){
        mp.clear();
        int pted=0,cnt=0;
        while(m--){
            scanf("%d%d",&x,&y);
            if(x>n-1-x){ //坐标转化成三角形中的对称坐标
                x=n-1-x;
            }
            if(y>n-1-y){
                y=n-1-y;
            }
            if(x>y){
                swap(x,y);
            }
            if(mp[make_pair(x,y)]==0){
                mp[make_pair(x,y)]=1;
                pted++;//已经涂过色的
            }
        }
        int cc=(n+1)/2;
        cnt=(cc+1)*cc/2;    //三角形中的总格子数
        INT ans=Pow((INT)k,(cnt-pted));
        printf("%I64d\n",ans);
    }
    return 0;
}

  

时间: 2024-11-07 19:39:01

HDU 4365——Palindrome graph——————【规律+快速幂】的相关文章

HDU 4365 Palindrome graph(几何变换+快速幂)

HDU 4365 题意:给你一个n*n的画,然后每个格子图上任意k种颜色之一,要求通过翻转旋转后与原图保持一致,且原图已有m个格子有颜色.求有多少种涂法? 思路: 可以发现,我们所求的画是个高度轴对称和中心对称的图形,我们沿两根对称轴与两根中心对称轴把图案切成八份,那么决定其涂色方案只需考虑其中一份即可,若其中一份有x个格子那么答案即是k^x. 然而还有一个条件,即已经有m个格子涂上了颜色,那么我们将m个格子映射至之前选择的八分之一区域内,表明该格子颜色已固定,假设有y个格子颜色已固定,那么答案

HDU 2604 Queuing (矩阵快速幂)

HDU 2604 Queuing (矩阵快速幂) ACM 题目地址:HDU 2604 Queuing 题意: n个人排队,f表示女,m表示男,包含子串'fmf'和'fff'的序列为O队列,否则为E队列,有多少个序列为E队列. 分析: 矩阵快速幂入门题. 下面引用巨巨解释: 用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1): 如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff

HDU 4686 Arc of Dream(快速幂矩阵)

题目链接 再水一发,构造啊,初始化啊...wa很多次啊.. #include <cstring> #include <cstdio> #include <string> #include <iostream> #include <algorithm> #include <vector> #include <queue> using namespace std; #define MOD 1000000007 #define

HDU 2254 奥运(矩阵快速幂+二分等比序列求和)

HDU 2254 奥运(矩阵快速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意: 中问题不解释. 分析: 根据floyd的算法,矩阵的k次方表示这个矩阵走了k步. 所以k天后就算矩阵的k次方. 这样就变成:初始矩阵的^[t1,t2]这个区间内的v[v1][v2]的和. 所以就是二分等比序列求和上场的时候了. 跟HDU 1588 Gauss Fibonacci的算法一样. 代码: /* * Author: illuz <iilluzen[at]gmail.com> * B

HDU 2604 Queuing,矩阵快速幂

题目地址:HDU 2604 Queuing 题意: 略 分析: 易推出:   f(n)=f(n-1)+f(n-3)+f(n-4) 构造一个矩阵: 然后直接上板子: /* f[i] = f[i-1] + f[i-3] + f[i-4] */ #include<cstdio> #include<cstring> using namespace std; const int N = 4; int L, M; struct mtx { int x[N+1][N+1]; mtx(){ mem

hdu 2243 AC自动机 + 矩阵快速幂

// hdu 2243 AC自动机 + 矩阵快速幂 // // 题目大意: // // 给你一些短串,问在长度不超过k的任意串,包含至少一个这些短串的其中 // 一个.问这样的串有多少个. // // 解题思路: // // 首先, 包含和不包含是一种互斥关系,包含+不包含 = 全集u.全集的答案就是 // 26 ^ 1 + 26 ^ 2 + .... + 26 ^ k.不包含的比较好求.构建一个自动机,得到 // 一个转移矩阵A.表示状态i能到状态j的方法数.而这些状态中都是不包含所给的 //

HDU 5363 Key Set【快速幂取模】

Key Set Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 1886    Accepted Submission(s): 990 Problem Description soda has a set S with n integers {1,2,-,n}. A set is called key set if the sum

HDU 2842 (递推+矩阵快速幂)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个环可以取下或放上,cost=1.求最小cost.MOD 200907. 解题思路: 递推公式 题目意思非常无聊,感觉是YY的. 设$dp[i]$为取第i个环时的总cost. $dp[1]=1$,$dp[2]=2$,前两个环取下是没有条件要求的. 从i=3开始,由于条件对最后的环限制最大,所以从最后一

HDU 5950 Recursive sequence 矩阵快速幂

http://acm.hdu.edu.cn/showproblem.php?pid=5950 一开始以为i^4不能矩阵快速幂,但是结论是可以得,那么要怎么递推呢? 矩阵快速幂的思路都是一样的,matrix_a * matrix_b ^ n 其中,想要维护什么,就在matrix_a写,比如现在是F[n - 1], F[n - 2],我想要递推到下一项,那么就 会变成F[n], F[n - 1],这个时候,你就要寻找一下F[n]和F[n - 1]有什么关系. i^4也一样,想要从i^4 递推到 (i