HDU1565_方格取数(1)

给一个数字方阵,你要从中间取出一些数字,保证相邻的两个数字不同时被取出来,求取出来的最大的和是多少?

建立图模型,对于行列的和为奇数的格子,建立一条从原点到达这个点的边,对于行列和为偶数的格子,建立一条从该点到汇点的边,流量均为这个数;对于相邻的格子,建立一条无穷大流量的边,这样要求最大的独立和,我们只要把最小割求出来,总和减去这个最小割就是我们的答案了呢。(EK也不会T哦)

召唤代码君:

#include <iostream>
#include <cstdio>
#include <cstring>
#define maxn 555
#define Inf 9999999
using namespace std;

int c[maxn][maxn],tag[maxn],pre[maxn],f[maxn];
int a[maxn][maxn];
int n,m,s,t,ans,tot,N=99;
int Q[maxn],bot,top;

void _init()
{
	s=0,t=n*n+1,ans=tot=0;
	memset(c,0,sizeof c);
}

void graph()
{
	for (int i=1; i<=n; i++)
		for (int j=1; j<=n; j++)
			if ((i+j)%2==1)
			{
				int cur=i*n+j-n;
				c[s][cur]+=a[i][j];
				if (i>1) c[cur][cur-n]+=Inf;
				if (i<n) c[cur][cur+n]+=Inf;
				if (j>1) c[cur][cur-1]+=Inf;
				if (j<n) c[cur][cur+1]+=Inf;
			}
			else c[i*n+j-n][t]+=a[i][j];
}

int EK()
{
	N++;
	Q[bot=top=1]=s,f[s]=Inf,tag[s]=N;
	while (bot<=top)
	{
		int cur=Q[bot++];
		for (int i=s; i<=t; i++)
			if (c[cur][i]>0 && tag[i]!=N)
			{
				tag[i]=N;
				pre[i]=cur;
				f[i]=min(f[cur],c[cur][i]);
				Q[++top]=i;
				if (i==t)
				{
					for (int k=t; k!=s; k=pre[k])
						c[pre[k]][k]-=f[t],c[k][pre[k]]+=f[t];
					return f[t];
				}
			}
	}
	return 0;
}

int main()
{
	while (scanf("%d",&n)!=EOF)
	{
		_init();
		for (int i=1; i<=n; i++)
			for (int j=1; j<=n; j++) scanf("%d",&a[i][j]),tot+=a[i][j];
		graph();
		while (int k=EK()) ans+=k;
		printf("%d\n",tot-ans);
	}
	return 0;
}

  

HDU1565_方格取数(1),布布扣,bubuko.com

时间: 2024-12-14 17:27:06

HDU1565_方格取数(1)的相关文章

hdu 1565 方格取数(2)(网络流之最大点权独立集)

题目链接:hdu 1565 方格取数(2) 题意: 有一个n*m的方格,每个方格有一个数,现在让你选一些数.使得和最大. 选的数不能有相邻的. 题解: 我们知道对于普通二分图来说,最大独立点集 + 最小点覆盖集 = 总点数,类似的,对于有权的二分图来说,有: 最大点权独立集 + 最小点权覆盖集 = 总点权和, 这个题很明显是要求 最大点权独立集 ,现在 总点权 已知,我们只要求出来 最小点权覆盖集 就好了,我们可以这样建图, 1,对矩阵中的点进行黑白着色(相邻的点颜色不同),从源点向黑色的点连一

P1004 方格取数

P1004 方格取数 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 0 0 0 0 7 0 0 0 0 0 0 14 0 0 0 0 0 21 0 0 0 4 0 0 0 0 15 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . B 某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角

hdoj 1569 方格取数(2) 【最小割】 【最大点权独立集】

方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 5589    Accepted Submission(s): 1741 Problem Description 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的

1475: 方格取数

1475: 方格取数 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 578  Solved: 309[Submit][Status][Discuss] Description 在一个n*n的方格里,每个格子里都有一个正整数.从中取出若干数,使得任意两个取出的数所在格子没有公共边,且取出的数的总和尽量大. Input 第一行一个数n:(n<=30) 接下来n行每行n个数描述一个方阵 Output 仅一个数,即最大和 Sample Input 2 1 2

hdu 1569 方格取数(2) 网络流 最大点权独立集

方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 5146    Accepted Submission(s): 1610 Problem Description 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的

HDU 1565 方格取数(1) (状态压缩 DP)

方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 5779    Accepted Submission(s): 2194 Problem Description 给你一个n*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出

HDU 1565 方格取数(1)(状压dp)

感觉这道题目的数据比较水啊,程序的时间复杂度为1711^2*20竟然也可以过掉....其他的就是状压了啊,注意需要滚动一下啊.... 方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 5701    Accepted Submission(s): 2159 Problem Description 给你一个n*n的格子的棋

hdu 3657 最小割的活用 / 奇偶方格取数类经典题 /最小割

题意:方格取数,如果取了相邻的数,那么要付出一定代价.(代价为2*(X&Y))(开始用费用流,敲升级版3820,跪...) 建图:  对于相邻问题,经典方法:奇偶建立二分图.对于相邻两点连边2*(X&Y),源->X连边,Y->汇连边,权值w为点权. ans=总点权-最小割:如果割边是源->X,表示x不要选(是割边,必然价值在路径上最小),若割边是Y-汇点,同理:若割边是X->Y,则表示选Y点且选X点, 割为w( 2*(X&Y) ). 自己的确还没有理解其本质

hdu 4859 最大点权独立集的变形(方格取数的变形)

/*刚开始不会写,最大点权独立集神马都不知道,在潘神的指导下终于做出来,灰常感谢ps: 和方格取数差不多奇偶建图,对于D必割点权为0,对于.必然不割点权为inf.然后和方格取数差不多的建图 .--.||E权值为2,,.||E--D权值为0. 最大点权独立集=sum-最小点权覆盖. */ #include<stdio.h> #include<string.h> #include<queue> using namespace std; #define inf 0x3ffff