spark core源码分析8 从简单例子看transformation

前面提到过spark自带的一个最简单的例子,也介绍了SparkContext的部分,这节介绍剩余的内容中的transformation。

object SparkPi {
  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName("Spark Pi")
    val spark = new SparkContext(conf)
    val slices = if (args.length > 0) args(0).toInt else 2
    val n = math.min(100000L * slices, Int.MaxValue).toInt // avoid overflow
    val count = spark.parallelize(1 until n, slices).map { i =>
      val x = random * 2 - 1
      val y = random * 2 - 1
      if (x*x + y*y < 1) 1 else 0
    }.reduce(_ + _)
    println("Pi is roughly " + 4.0 * count / n)
    spark.stop()
  }
}

调用SparkContext的parallelize方法。此方法在一个已经存在的Scala集合上创建出一个可以被并行操作的分布式数据集,也就是返回一个RDD。

大家都在书面化的说RDD是什么,我还不如用源码的方式展示更为直观。可以看出来,最基本的RDD其实就是sparkContext和它本身的依赖。

abstract class RDD[T: ClassTag](
    @transient private var _sc: SparkContext,
    @transient private var deps: Seq[Dependency[_]]
  ) extends Serializable with Logging {
  ...
  ...
}

我们顺着看parallelize方法的内容。seq是一个scala集合类型。numSlices是设置的并行度,有默认值(配置项或者driver获得的Executor注册上来的总的core)

override def defaultParallelism(): Int = {
  conf.getInt("spark.default.parallelism", math.max(totalCoreCount.get(), 2))
}
def parallelize[T: ClassTag](
      seq: Seq[T],
      numSlices: Int = defaultParallelism): RDD[T] = withScope {
    assertNotStopped()
    new ParallelCollectionRDD[T](this, seq, numSlices, Map[Int, Seq[String]]())
  }

我们继续看ParallelCollectionRDD的内部。它重写了RDD的一些方法,并设置依赖为Nil

private[spark] class ParallelCollectionRDD[T: ClassTag](
    @transient sc: SparkContext,
    @transient data: Seq[T],
    numSlices: Int,
    locationPrefs: Map[Int, Seq[String]])
    extends RDD[T](sc, Nil) {
  // TODO: Right now, each split sends along its full data, even if later down the RDD chain it gets
  // cached. It might be worthwhile to write the data to a file in the DFS and read it in the split
  // instead.
  // UPDATE: A parallel collection can be checkpointed to HDFS, which achieves this goal.

  override def getPartitions: Array[Partition] = {
    val slices = ParallelCollectionRDD.slice(data, numSlices).toArray
    slices.indices.map(i => new ParallelCollectionPartition(id, i, slices(i))).toArray
  }

  override def compute(s: Partition, context: TaskContext): Iterator[T] = {
    new InterruptibleIterator(context, s.asInstanceOf[ParallelCollectionPartition[T]].iterator)
  }

  override def getPreferredLocations(s: Partition): Seq[String] = {
    locationPrefs.getOrElse(s.index, Nil)
  }
}

到这里,parallelize的操作就结束了。这其实就是人们常说的spark Transformation,并没有触发任务的调度。

接着,在这个ParallelCollectionRDD上执行map操作。其实就是执行了RDD抽象类中的map方法。

/**
   * Return a new RDD by applying a function to all elements of this RDD.
   */
  def map[U: ClassTag](f: T => U): RDD[U] = withScope {
    val cleanF = sc.clean(f)
    new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))
  }

map方法中的f参数其实就是我们程序中写的map中的操作,之后产生了MapPartitionsRDD。

prev参数就是执行map转换之前的ParallelCollectionRDD

private[spark] class MapPartitionsRDD[U: ClassTag, T: ClassTag](
    prev: RDD[T],
    f: (TaskContext, Int, Iterator[T]) => Iterator[U],  // (TaskContext, partition index, iterator)
    preservesPartitioning: Boolean = false)
  extends RDD[U](prev) {

  override val partitioner = if (preservesPartitioning) firstParent[T].partitioner else None

  override def getPartitions: Array[Partition] = firstParent[T].partitions

  override def compute(split: Partition, context: TaskContext): Iterator[U] =
    f(context, split.index, firstParent[T].iterator(split, context))
}

查看父类RDD的构造过程,其实就是默认构建一个one-to-one的依赖,OneToOneDependency意味着RDD的转换过程是一对一的,即分区号是一一对应的。注明的是,依赖中保存的RDD是转换之前的RDD,这里的话就是ParallelCollectionRDD

/** Construct an RDD with just a one-to-one dependency on one parent */
  def this(@transient oneParent: RDD[_]) =
    this(oneParent.context , List(new OneToOneDependency(oneParent)))

partitioner其实就是包含了分区的数量以及根据key获得分区号的一个包装。

abstract class Partitioner extends Serializable {
  def numPartitions: Int
  def getPartition(key: Any): Int
}

到这里为止,map操作就介绍结束了。同样也没有触发任务的调度,只是RDD的转换。

现在看最后的reduce操作

/**
 * Reduces the elements of this RDD using the specified commutative and
 * associative binary operator.
 */
def reduce(f: (T, T) => T): T = withScope {
  val cleanF = sc.clean(f)
  //定义一个具体的方法,将迭代器参数中的值从左一个个相加
  val reducePartition: Iterator[T] => Option[T] = iter => {
    if (iter.hasNext) {
      Some(iter.reduceLeft(cleanF))
    } else {
      None
    }
  }
  var jobResult: Option[T] = None
  //定义一个将各分区合并的方法
  val mergeResult = (index: Int, taskResult: Option[T]) => {
    if (taskResult.isDefined) {
      jobResult = jobResult match {
        case Some(value) => Some(f(value, taskResult.get))
        case None => taskResult
      }
    }
  }
  //执行runJob
  sc.runJob(this, reducePartition, mergeResult)
  // Get the final result out of our Option, or throw an exception if the RDD was empty
  jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))
}

最终调用这个runJob方法,参数:

rdd:MapPartitionsRDD
func:包装了reducePartition方法
partitions:0 until rdd.partitions.size,rdd.partitions就是调用了MapPartitionsRDD的getPartitions方法所得。每次转换之后的RDD都会保存之前所有的依赖,所以可以根据依赖关系追溯到第一个RDD。这里MapPartitionsRDD的getPartitions方法是获取第一个RDD的getPartitions方法。
allowLocal:false
resultHandler:mergeResult方法
/**
   * Run a function on a given set of partitions in an RDD and pass the results to the given
   * handler function. This is the main entry point for all actions in Spark. The allowLocal
   * flag specifies whether the scheduler can run the computation on the driver rather than
   * shipping it out to the cluster, for short actions like first().
   */
  def runJob[T, U: ClassTag](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      partitions: Seq[Int],
      allowLocal: Boolean,
      resultHandler: (Int, U) => Unit) {
    if (stopped.get()) {
      throw new IllegalStateException("SparkContext has been shutdown")
    }
    val callSite = getCallSite
    val cleanedFunc = clean(func)
    logInfo("Starting job: " + callSite.shortForm)
    if (conf.getBoolean("spark.logLineage", false)) {
      logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
    }
    dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, allowLocal,
      resultHandler, localProperties.get)
    progressBar.foreach(_.finishAll())
    rdd.doCheckpoint()
  }

这里最终调用了DAGScheduler的runJob方法 -> submitJob

这里产生JobId,发送JobSubmitted消息到DAG的事件循环中 -> handleJobSubmitted
所以,这个reduce实际触发了runJob操作,即spark中称为Action。
下一节,就介绍剩下的reduce操作

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-17 15:55:39

spark core源码分析8 从简单例子看transformation的相关文章

spark core源码分析9 从简单例子看action操作

上一节举例讲解了transformation操作,这一节以reduce为例讲解action操作 首先看submitJob方法,它将我们reduce中写的处理函数随JobSubmitted消息传递出去,因为每个分区都需要调用它进行计算: 而resultHandler是指最后合并的方法,在每个task完成后,需要调用resultHandler将最终结果合并.所以它不需要随JobSubmitted消息传递,而是保存在JobWaiter中 /** * Submit a job to the job sc

spark core源码分析6 Spark job的提交

本节主要讲解SparkContext的逻辑 首先看一个spark自带的最简单的例子: object SparkPi { def main(args: Array[String]) { val conf = new SparkConf().setAppName("Spark Pi") val spark = new SparkContext(conf) val slices = if (args.length > 0) args(0).toInt else 2 val n = ma

spark core源码分析7 Executor的运行

实际任务的运行,都是通过Executor类来执行的.这一节,我们只介绍Standalone模式. 源码位置:org.apache.spark.executor.CoarseGrainedExecutorBackend private def run( driverUrl: String, executorId: String, hostname: String, cores: Int, appId: String, workerUrl: Option[String], userClassPath

spark core源码分析4 worker启动流程

源码位置:org.apache.spark.deploy.worker.Worker.scala 首先查看worker的main方法,与master类似,创建sparkConf,参数解析,以及构造worker对象并创建ActorRef用于对外或者本身的信息交互.这里masters参数可以设置多个 def main(argStrings: Array[String]) { SignalLogger.register(log) val conf = new SparkConf val args =

spark core源码分析10 Task的运行

这一节介绍具体task的运行以及最终结果的处理 看线程运行的run方法,见代码注释 override def run(): Unit = { val taskMemoryManager = new TaskMemoryManager(env.executorMemoryManager) val deserializeStartTime = System.currentTimeMillis() Thread.currentThread.setContextClassLoader(replClass

spark core源码分析14 参数配置

博客地址: http://blog.csdn.net/yueqian_zhu/ spark 参数详解 一.Shuffle 相关 1.spark.shuffle.manager(默认 sort) HashShuffleManager,故名思义也就是在Shuffle的过程中写数据时不做排序操作,只是将数据根据Hash的结果,将各个Reduce分区的数据写到各自的磁盘文件中.带来的问题就是如果Reduce分区的数量比较大的话,将会产生大量的磁盘文件.如果文件数量特别巨大,对文件读写的性能会带来比较大的

spark core源码分析15 Shuffle详解-写流程

博客地址: http://blog.csdn.net/yueqian_zhu/ Shuffle是一个比较复杂的过程,有必要详细剖析一下内部写的逻辑 ShuffleManager分为SortShuffleManager和HashShuffleManager 一.SortShuffleManager 每个ShuffleMapTask不会为每个Reducer生成一个单独的文件:相反,它会将所有的结果写到一个本地文件里,同时会生成一个index文件,Reducer可以通过这个index文件取得它需要处理

spark core源码分析13 异常情况下的容错保证

博客地址: http://blog.csdn.net/yueqian_zhu/ standalone模式下的框架图如下: 异常分析1: worker异常退出 worker异常退出,比如说有意识的通过kill指令将worker杀死 worker在退出之前,会将自己所管控的所有小弟executor全干掉 worker需要定期向master改善心跳消息的,现在worker进程都已经玩完了,哪有心跳消息,所以Master会在超时处理中意识到有一个"分舵"离开了 Master非常伤心,伤心的Ma

Spark SQL源码分析之核心流程

自从去年Spark Submit 2013 Michael Armbrust分享了他的Catalyst,到至今1年多了,Spark SQL的贡献者从几人到了几十人,而且发展速度异常迅猛,究其原因,个人认为有以下2点: 1.整合:将SQL类型的查询语言整合到 Spark 的核心RDD概念里.这样可以应用于多种任务,流处理,批处理,包括机器学习里都可以引入Sql. 2.效率:因为Shark受到hive的编程模型限制,无法再继续优化来适应Spark模型里. 前一段时间测试过Shark,并且对Spark