Least Common Multiple
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 37254 Accepted Submission(s): 14023
Problem Description
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 ... nm where m is the number of integers in the set and n1 ... nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
Sample Input
2
3 5 7 15
6 4 10296 936 1287 792 1
Sample Output
105 10296
这题的大致意思是第一行输入有几个例子,后面几行首位是代表这一个例子有几个元素,然后求这几个元素的最小公倍数;
我用的方法是 最小公倍数=a*b-(a,b)的最大公倍数;先求出前两个数的最小公倍数,然后再拿这个公倍数跟后面几个去比较,依次下去;
最大公约数我用的是递归函数做的 具体方法是 辗转相除法;
下面是我的代码
1 #include<stdio.h> 2 __int64 gcd(__int64 n,__int64 m)//辗转相除法 3 { 4 if(m==0) 5 return n; 6 else 7 return gcd(m,n%m); 8 } 9 int main() 10 { 11 int i,n,m; 12 __int64 a[100],min,max,t; 13 14 scanf("%d",&n); 15 while(n--) 16 { 17 scanf("%d",&m); 18 for(i=0;i<m;i++) 19 { 20 scanf("%I64d",&a[i]); 21 } 22 23 min=a[0]; 24 for(i=1;i<m;i++) 25 { 26 if(min<a[i]) 27 { 28 t=min; 29 min=a[i]; 30 a[i]=t; 31 } 32 max=gcd(min,a[i]); 33 min=min*a[i]/max; 34 35 } 36 printf("%I64d\n",min); 37 38 } 39 }