P1066 2^k进制数

P1066 2^k进制数

    • 204通过
    • 373提交
  • 题目提供者洛谷OnlineJudge
  • 标签数论(数学相关)高精NOIp提高组2006
  • 难度提高+/省选-

提交该题 讨论 题解 记录

最新讨论

  • 暂时没有讨论

题目描述

设r是个2^k 进制数,并满足以下条件:

(1)r至少是个2位的2^k 进制数。

(2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位。

(3)将r转换为2进制数q后,则q的总位数不超过w。

在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的。

问:满足上述条件的不同的r共有多少个?

我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q。将S从右起划分为若干个长度为k 的段,每段对应一位2^k进制的数,如果S至少可分成2段,则S所对应的二进制数又可以转换为上述的2^k 进制数r。

例:设k=3,w=7。则r是个八进制数(23=8)。由于w=7,长度为7的01字符串按3位一段分,可分为3段(即1,3,3,左边第一段只有一个二进制位),则满足条件的八进制数有:

2位数:高位为1:6个(即12,13,14,15,16,17),高位为2:5个,…,高位为6:1个(即67)。共6+5+…+1=21个。

3位数:高位只能是1,第2位为2:5个(即123,124,125,126,127),第2位为3:4个,…,第2位为6:1个(即167)。共5+4+…+1=15个。

所以,满足要求的r共有36个。

输入输出格式

输入格式:

输入只有1行,为两个正整数,用一个空格隔开:

k W

输出格式:

输出为1行,是一个正整数,为所求的计算结果,即满足条件的不同的r的个数(用十进制数表示),要求最高位不得为0,各数字之间不得插入数字以外的其他字符(例如空格、换行符、逗号等)。

(提示:作为结果的正整数可能很大,但不会超过200位)

输入输出样例

输入样例#1:

3 7

输出样例#1:

36

说明

NOIP 2006 提高组 第四题

题解:

题目中的那个从另一角度分析就已经蕴含了这个题的基本思路。就以题目的例子为例,长度为7位的01字串按3位一段就这样分:0 000 000。其中除了首段,每段都小于(111)2,也即小于2k,而首段自然是小于2w%k(对于w%k为0时也成立)了。

如果首段为0,则当这个2k进制数位数分别为2、3、...、[n/k]时,如果用b_max表示2k,对应的解的个数分别为C[b_max-1][2]、C[b_max-1][3]、...、C[b_max-1][n/k](C[i][j]表示从i个数里选j个构成一组组合)。

如果首段不为0,设首段为x,则解就有c[b_max-x-1][n/k]个。

这样,求解的个数就搞定了,剩下的活就是高精了。求组合数可以用这个公式:C[n][m]=C[n-1][m-1]+C[n-1][m],这样高精就只用加法了。

总结:answer=C(2^k-1,I)(2<=I<=w div k)+C(2^k-i-1,w div k)(1<=I<=2^(w mod k-1))

AC代码:

#include<bits/stdc++.h>
using namespace std;
int k,w,ans[220],f[1050][250];
void add(int a[],int b[]){
    int last=0;
    a[0]=max(a[0],b[0]);
    for(int i=1;i<=a[0];i++){
        a[i]+=b[i]+last;
        last=a[i]/10;
        a[i]%=10;
    }
    if(last>0) a[++a[0]]=last;
}
int main(){
    scanf("%d%d",&k,&w);
    if(w<=k) {printf("0\n");return 0;}
    int first,bitmax,lenth;
    bitmax=(1<<k)-1;
    if(w%k==0){
        first=bitmax;
        lenth=w/k-1;
    }
    else{
        first=(1<<(w%k))-1;
        lenth=w/k;
    }
    f[1][0]=1;
    f[1][1]=1;
    ans[0]=0;
    for(int i=1;i<=bitmax;i++){
        for(int j=i+1;j>=1;j--) add(f[j],f[j-1]);
        if(i>=bitmax-first&&i<bitmax) add(ans,f[lenth+1]);
    }
    for(int i=2;i<=lenth;i++) add(ans,f[i+1]);
    for(int i=ans[0];i;i--) printf("%d",ans[i]);
    printf("\n");
    return 0;
}

  

时间: 2024-12-04 23:31:54

P1066 2^k进制数的相关文章

洛谷 P1066 2^k进制数

P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3

[luogu]P1066 2^k进制数[数学][递推][高精度]

[luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q

[NOIP2006] 提高组 洛谷P1066 2^k进制数

题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q.将S从右起划分为

1813. M进制数问题

1813. M进制数问题 Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description 试用 C++的类来表示一般进制数. 给定 2 个n位m进制整数A和B,计算m进制数整数P = A / B (向下取整)与 Q = A % B的值. Input 输入包含多个测试点.第一行为一个整数T,表示测试点数. 对于每个测试点第 1 行是进制 m .第 2 行和第 3 行分别给出 m 进制整数 A 和 B. 所有 m 进制数的10进制表示均

2^k进制数

[题目描述] 设R是个2^k进制数,并满足以下条件: (1)R至少是个2位的2^k进制数: (2)作为2^k进制数,除最后一位外,R的每一位严格小于它右边相邻的那一位: (3)将R转换为2进制数q后,则q的总位数不超过w: 在这里,正整数k(1 ≤ k ≤ 9)和w(k < w ≤30000)是事先给定的. 询问满足上述条件的不同的r共有多少个. 我们再从另一角度作些解释: 设S是长度为w的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q.将S从右起划分为若干个长度

javascript将10进制数转换为2进制

javascript中将10进制数转换为2进制有两种方式 一种是直接用toString(2)这个方法,一种是自己写一个方法换算,以下是代码: var num = 11; var str = num.toString(2); /*将十进制数转变为二进制数*/ function dec2bin(num){ var result = ""; if(num == 0){ return "0"; } while(num > 0){ result = num % 2 +

用Python内置函数轻松实现各种进制数之间的转换

0.说明 9个月没有写过Python了,这9个月都在华为的ICT知识海洋里遨游,前段时间刚刚通过了HCIE的认证,想着还是喜欢Python和Linux多些,所以又回来了,后面会有越来越多的Python干货分享给大家,比如后面会打算写一个完整的Linux主机监控项目的教程给初入门的朋友,相信这会是非常不错的体验. 那段时间,曾经有些时候,我需要对各种进制进行转换,因为虽然那会不写Python了,但是还是用Python自带的解释器用来做简单的数学计算,很方便. 在网上找,看有没有方法可以实现各种进制

codevs 1157 2k进制数

1157 2k进制数 2006年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 设r是个2k进制数,并满足以下条件: (1)r至少是个2位的2k进制数. (2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有

2k进制数(codevs 1157)

题目描述 Description 设r是个2k进制数,并满足以下条件: (1)r至少是个2位的2k进制数. (2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w. 在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的. 问:满足上述条件的不同的r共有多少个? 我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q.将S