题意:无源无汇有上下界的可行流 模型
思路:首先将所有边的容量设为上界减去下界,然后对一个点i,设i的所有入边的下界和为to[i],所有出边的下界和为from[i],令它们的差为dif[i]=to[i]-from[i],根据流量平衡原理,让出边和入边的下界相抵消,如果dif[i]>0,说明入边把出边的下界抵消了,还剩下dif[i]的流量必须要流过来(否则不满足入边的下界条件),这时从源点向i连一条容量为dif[i]的边来表示即可,如果dif[i]<0,同理应该从i向汇点连一条容量为-dif[i]的边。最后对新建好的图跑一遍最大流,如果源点的所有出边都满流了说明原图有可行流,可行解为每条边在新图的流量加上它的下界。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
#pragma comment(linker, "/STACK:10240000") #include <map> #include <set> #include <cmath> #include <ctime> #include <deque> #include <queue> #include <stack> #include <vector> #include <cstdio> #include <string> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define X first #define Y second #define pb push_back #define mp make_pair #define all(a) (a).begin(), (a).end() #define fillchar(a, x) memset(a, x, sizeof(a)) #define fillarray(a, b) memcpy(a, b, sizeof(a)) typedef long long ll; typedef pair<int, int> pii; typedef unsigned long long ull; #ifndef ONLINE_JUDGE namespace Debug { void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);} void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R> void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1; while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T> void print(const T t){cout<<t<<endl;}template<typename F,typename...R> void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T> void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;} } #endif // ONLINE_JUDGE template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);} template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);} const double PI = acos(-1.0); const int INF = 0x3f3f3f3f; const double EPS = 1e-14; /* -------------------------------------------------------------------------------- */ const int maxn = 2e2 + 7; struct Dinic { private: //const static int maxn = 1e3 + 7; struct Edge { int from, to, cap, least; Edge(int u, int v, int w, int l): from(u), to(v), cap(w), least(l) {} }; int s, t; vector<Edge> edges; vector<int> G[maxn]; bool vis[maxn]; int d[maxn], cur[maxn]; bool bfs() { memset(vis, 0, sizeof(vis)); queue<int> Q; Q.push(s); d[s] = 0; vis[s] = true; while (!Q.empty()) { int x = Q.front(); Q.pop(); for (int i = 0; i < G[x].size(); i ++) { Edge &e = edges[G[x][i]]; if (!vis[e.to] && e.cap) { vis[e.to] = true; d[e.to] = d[x] + 1; Q.push(e.to); } } } return vis[t]; } int dfs(int x, int a) { if (x == t || a == 0) return a; int flow = 0, f; for (int &i = cur[x]; i < G[x].size(); i ++) { Edge &e = edges[G[x][i]]; if (d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap))) > 0) { e.cap -= f; edges[G[x][i] ^ 1].cap += f; flow += f; a -= f; if (a == 0) break; } } return flow; } public: void clear() { for (int i = 0; i < maxn; i ++) G[i].clear(); edges.clear(); memset(d, 0, sizeof(d)); } void add(int from, int to, int cap, int least) { edges.push_back(Edge(from, to, cap, least)); edges.push_back(Edge(to, from, 0, least)); int m = edges.size(); G[from].push_back(m - 2); G[to].push_back(m - 1); } int solve(int s, int t) { this->s = s; this->t = t; int flow = 0; while (bfs()) { memset(cur, 0, sizeof(cur)); flow += dfs(s, 1e9); } return flow; } void out(int m) { for (int i = 0; i < m; i ++) { printf("%d\n", edges[i << 1].least + edges[i << 1 | 1].cap); } } }; Dinic solver; int tob[maxn], fromb[maxn]; int main() { #ifndef ONLINE_JUDGE freopen("in.txt", "r", stdin); //freopen("out.txt", "w", stdout); #endif // ONLINE_JUDGE int n, m; while (cin >> n >> m) { solver.clear(); fillchar(tob, 0); fillchar(fromb, 0); for (int i = 0; i < m; i ++) { int u, v, b, c; scanf("%d%d%d%d", &u, &v, &b, &c); solver.add(u, v, c - b, b); tob[v] += b; fromb[u] += b; } int total = 0; for (int i = 1; i <= n; i ++) { int dif = tob[i] - fromb[i]; if (dif > 0) solver.add(0, i, dif, 0); if (dif < 0) solver.add(i, n + 1, - dif, 0); total += abs(dif); } if (solver.solve(0, n + 1) != total / 2) puts("NO"); else { puts("YES"); solver.out(m); } } return 0; } |
时间: 2024-12-24 18:49:25