单调队列优化DP,多重背包

传送门:hdu 3401 Trade

/**************************************************************
    Problem:hdu 3401 Trade
    User: youmi
    Language: C++
    Result: Accepted
    Time:171MS
    Memory:17368K
****************************************************************/
//#pragma comment(linker, "/STACK:1024000000,1024000000")
//#include<bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#include <cmath>
#include <queue>
#include <deque>
#include <string>
#include <vector>
#define zeros(a) memset(a,0,sizeof(a))
#define ones(a) memset(a,-1,sizeof(a))
#define sc(a) scanf("%d",&a)
#define sc2(a,b) scanf("%d%d",&a,&b)
#define sc3(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define scs(a) scanf("%s",a)
#define sclld(a) scanf("%I64d",&a)
#define pt(a) printf("%d\n",a)
#define ptlld(a) printf("%I64d\n",a)
#define rep(i,from,to) for(int i=from;i<=to;i++)
#define irep(i,to,from) for(int i=to;i>=from;i--)
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define lson (step<<1)
#define rson (lson+1)
#define eps 1e-6
#define oo 1e9
#define TEST cout<<"*************************"<<endl
const double pi=4*atan(1.0);

using namespace std;
typedef long long ll;
template <class T> inline void read(T &n)
{
    char c; int flag = 1;
    for (c = getchar(); !(c >= ‘0‘ && c <= ‘9‘ || c == ‘-‘); c = getchar()); if (c == ‘-‘) flag = -1, n = 0; else n = c - ‘0‘;
    for (c = getchar(); c >= ‘0‘ && c <= ‘9‘; c = getchar()) n = n * 10 + c - ‘0‘; n *= flag;
}
ll Pow(ll base, ll n, ll mo)
{
    ll res=1;
    while(n)
    {
        if(n&1)
            res=res*base%mo;
        n>>=1;
        base=base*base%mo;
    }
    return res;
}
//***************************

int T,P,w;
const int maxn=2000+10;
const ll mod=1000000007;
int dp[maxn][maxn];
int ap[maxn],bp[maxn];
int as[maxn],bs[maxn];
struct node
{
    int val,p;
};
node q[maxn];
int head,tail;
int main()
{
    #ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
    #endif
    int T_T;
    scanf("%d",&T_T);
    for(int kase=1;kase<=T_T;kase++)
    {
        sc3(T,P,w);
        rep(i,1,T)
        {
            sc2(ap[i],bp[i]);//buy,sell,money
            sc2(as[i],bs[i]);//buy,sell,number
        }
        rep(i,0,T)
            rep(j,0,P)
                dp[i][j]=-oo;
        dp[0][0]=0;
        rep(i,1,T)
        {
            if(i<=w+1)
            {
                rep(j,0,min(P,as[i]))
                    dp[i][j]=-ap[i]*j;
            }
            rep(j,0,P)
                dp[i][j]=max(dp[i][j],dp[i-1][j]);
            if(i<=w+1)
                continue;
            head=tail=0;
            for(int j=P;j>=0;j--)
            {
                int temp=dp[i-w-1][j]+bp[i]*j;
                while(tail>head&&temp>q[tail-1].val) tail--;
                q[tail].val=temp,q[tail].p=j,tail++;
                while(tail>head&&q[head].p-bs[i]>j)  head++;
                temp=q[head].val;
                dp[i][j]=max(dp[i][j],temp-bp[i]*j);
            }
            tail=head=0;
            rep(j,0,P)
            {
                int temp=dp[i-w-1][j]+ap[i]*j;
                while(tail>head&&temp>q[tail-1].val)  tail--;
                q[tail].val=temp,q[tail].p=j,tail++;
                while(tail>head&&q[head].p+as[i]<j) head++;
                temp=q[head].val;
                dp[i][j]=max(dp[i][j],temp-ap[i]*j);
            }
        }
        int ans=0;
        rep(i,0,P)
            ans=max(ans,dp[T][i]);
        pt(ans);
    }
    return 0;
}

时间: 2024-10-09 06:52:54

单调队列优化DP,多重背包的相关文章

HDU 4122 Alice&#39;s mooncake shop 单调队列优化dp

Alice's mooncake shop Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4122 Description The Mid-Autumn Festival, also known as the Moon Festival or Zhongqiu Festival is a popular harvest festival celebrated by Ch

Tyvj1305最大子序和(单调队列优化dp)

描述 输入一个长度为n的整数序列,从中找出一段不超过M的连续子序列,使得整个序列的和最大. 例如 1,-3,5,1,-2,3 当m=4时,S=5+1-2+3=7当m=2或m=3时,S=5+1=6 输入格式 第一行两个数n,m第二行有n个数,要求在n个数找到最大子序和 输出格式 一个数,数出他们的最大子序和 测试样例1 输入 6 4 1 -3 5 1 -2 3 输出 7 备注 数据范围:100%满足n,m<=300000 是不超过m,不是选m个!!!!! /* 单调队列优化dp 单调队列维护的是前

bzoj1855: [Scoi2010]股票交易--单调队列优化DP

单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w-1][k]+k*Ap[i]的单调性即可 1 #include<stdio.h> 2 #include<string.h> 3 #include<algorithm> 4 using namespace std; 5 const int maxn = 2010; 6 int

1855: [Scoi2010]股票交易[单调队列优化DP]

1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status][Discuss] Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价为每股APi,第i天的股票卖出价为每股BPi(数据保证对于每个i,都有APi>=

BZOJ 1855 股票交易(单调队列优化DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1855 题意:最近lxhgww又迷上了投资股票, 通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价为每股APi,第i天的股票卖出价为每股BPi(数据保证对于每 个i,都有APi>=BPi),但是每天不能无限制地交易,于是股票交易所规定第i天的一次买入至多只能购买ASi股,一次卖出至多只能卖出BS

【单调队列优化dp】uestc 594 我要长高

http://acm.uestc.edu.cn/#/problem/show/594 [AC] 1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 const int maxn=5e4+2; 5 const int inf=0x3f3f3f3f; 6 int n,c; 7 int cur; 8 int dp[2][maxn]; 9 int q[maxn]; 10 int main() 11 { 1

洛谷P1725 琪露诺 单调队列优化 DP

洛谷P1725 琪露诺 单调队列优化 DP 题意:1--n 每个点都有一个权值,从当前点i可以到达i+l--i+r 之间的点, 动态规划 方程 为 f[ i ] = max(f[ i ],f[ k ] ) +a[ i ] i-r<=k<=i-l 然而这样复杂度 就为 n^2 因为相当于 dp 是在求 一段区间的最大值,而这个最大值就可以用O(n) 来维护 注意 这个O(n) 是均摊O(n) 即将所有固定区间长度的 最大值求出来 是 O(n)的这样就把复杂度降到 O(n) 级别了 1 #incl

Parade(单调队列优化dp)

题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 902    Accepted Submission(s): 396 Problem Description Panagola, The Lord of city F lik

bzoj1233: [Usaco2009Open]干草堆tower 单调队列优化dp

又是一道单调队列优化dp的题目 这道题呢 先要了解一个结论,在多种可行的堆叠方案中,至少有一种能使层数最高的方案同时使得底边最短.即底边最短的,层数一定最高. 这个是zkw大神得出的 我也不会证明来着 反正这样之后我们就可以得出正确的方法了 递推式 F[i]=min(sum[j-1]-sum[i-1])  j>i 且 sum[j-1]-sum[i-1]>=F[j] 易得在满足的条件下j当然是越小越好了嘛 而这样得出的方程又满足一定的单调性 这样调整之后队首就是我们要的答案啦 又对于转移条件 f

hdu3401:单调队列优化dp

第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次交易后至少要间隔w天才能再次交易,初始有0股,本金无限,求最大收益 题解:dp[i][j]表示第 i 天,有 j 股的最大收益 状态转移 dp[i][j]=max{dp[i-1][j](不买不卖),dp[r][k]-(j-k)*pa[i](i-r>w,j-k<=na[i],买),dp[r][k]+