1、标量(scalar)、向量(vector)、矩阵(matrix)、张量(tensor)。
2、一些关于矩阵的概念:主对角线(main diagonal)、单位矩阵(identity matrix)、逆矩阵(matrix inversion)、对角矩阵(diagonal matrix)、对称矩阵(symmetric matrix)、正交矩
阵(orthogonal matrix)。
3、对于矩阵的一些操作和运算:转置(transpose)、标量与矩阵相加、标量与矩阵相乘、广播(broadcast)(将向量和矩阵的每一行相加)、向量与矩阵相乘、求逆。
4、矩阵乘积/标准乘积(matrix product):C=AB
元素对应乘积/Hadamard乘积:C=A⊙B
5、线性相关与线性无关。
6、范数(norm):常用的范数有①L1范数:||x||1 =Σ|xi| ②L2范数(欧几里得范数) ③L∞范数(最大范数):||x||∞=max|xi|
→衡量矩阵的大小时,深度学习中常用Frobenius范数:||A||F=(Σ(Ai,j)2)1/2
7、向量的点积可以表示为:xTy=||x||2||y||2cosθ。
8、特征分解(eigendecomposition):将矩阵分解为一组特征向量和特征值。任意一个实对称矩阵都有特征分解,但可能并不唯一。根据特征值的正负不同,可以将矩阵称为正定
(positive definite)、半正定(positive semidefinite)、负定(negative definite)、半负定矩阵(negative semidefinite)。
9、奇异值分解(singular value decomposition,SVD):将矩阵分解为奇异向量和奇异值。每个实矩阵都有一个奇异值分解。
10、Moore-Penrose伪逆
11、迹运算Tr(A):返回矩阵对角元素的和。标量的迹运算是它本身。
12、行列式det(A)
原文地址:https://www.cnblogs.com/rainton-z/p/11615545.html