zoj_3203 (三分)

Description

Compared to wildleopard‘s wealthiness, his brother mildleopard is rather poor. His house is narrow and he has only one light bulb in his house. Every night, he is wandering in his incommodious house, thinking of how to earn more money. One day, he found that the length of his shadow was changing from time to time while walking between the light bulb and the wall of his house. A sudden thought ran through his mind and he wanted to know the maximum length of his shadow.

Input

The first line of the input contains an integer T (T <= 100), indicating the number of cases.

Each test case contains three real numbers H, h and D in one line. H is the height of the light bulb while h is the height of mildleopard. D is distance between the light bulb and the wall. All numbers are in range from 10-2 to 103, both inclusive, and H - h >= 10-2.

Output

For each test case, output the maximum length of mildleopard‘s shadow in one line, accurate up to three decimal places..

Sample Input

3
2 1 0.5
2 0.5 3
4 3 4

Sample Output

1.000
0.750
4.000

求影子长度的最大值,哦,最大值,那就是三分喽。



根据相似三角形边的关系,推导出公式影长:D-x+H-(H-h)*D/x;
#include<bits/stdc++.h>
using namespace std;
const double esp = 1e-10;
double H,h,D,L,R,mid,midd;

double f(double x){
	return D-x+H-(H-h)*D/x;
}

int main(){
	int T;
	scanf("%d",&T);
	while(T--){
		scanf("%lf %lf %lf",&H,&h,&D);
		mid = midd = 0.0;
		L=0.0; R=D;
		while(R-L>esp){
			mid=L+(R-L)/2.0;
			midd=mid+(R-mid)/2.0;
			if(f(mid)<f(midd))
				L=mid;
			else
				R=midd;
		}
		printf("%.3lf\n",f(L));
	}
	return 0;
}

				
时间: 2024-10-13 17:16:39

zoj_3203 (三分)的相关文章

hdu 4717 The Moving Points(三分)

题目链接:hdu 4717 The Moving Points 题意: 在二维平面上有n个点,每个点给出移动的方向和速度. 问在某个时刻,这些点中最大距离最小是多少,输出时刻和距离. 题解: 我们可以知道,每个点对的距离要么是单调递增,要么是有一个峰的函数. 举例画一下可知道合成的这个函数最多只有一个峰,所以可以用三分求解. 1 #include<bits/stdc++.h> 2 #define F(i,a,b) for(int i=a;i<=b;++i) 3 using namespa

三分算法

三分算法 二分算法解决的是具有单调性的问题. 三分算法解决的是抛物线的类型,上凸,下凹. mid=(Left+Right)/2; midmid=(Right+mid)/2; 题目类型有: HDU :3400  2298  4454  2438  3756 POJ:  3301   3737 ZOJ: 3203

uvalive 4986(三分查找)

题意:空间内有n个点,求一个最小体积的圆锥把所有点包进去.输出圆锥的高和底面半径.圆锥的底面圆心在(0,0),所有点的z坐标都大于等于0. 题解:因为圆锥体积是 V = 1/3 * π * r^2 * h ,这是一个二次函数,也就是个凸性函数,可以用三分查找的方式枚举两个高,然后找到对应的最小的r,比对两个高得到的体积继续三分查找. #include <cstdio> #include <cstring> #include <algorithm> #include &l

Toxophily-数论以及二分三分

G - Toxophily Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 2298 Description The recreation center of WHU ACM Team has indoor billiards, Ping Pang, chess and bridge, toxophily, deluxe ballroom

三分 --- CSU 1548: Design road

Design road Problem's Link:   http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1548 Mean: 目的:从(0,0)到达(x,y).但是在0~x之间有n条平行于y轴的河,每条河位于xi处,无限长,wi宽,并分别给出了建立路和桥每公里的单价 求:到达目标的最小费用. analyse: 比赛的时候一直没想到思路,第二个样列怎么算都算不对,赛后才知道是三分. 首先把所有的桥移到最右端,然后三分枚举路和河的交点. Time

csu 1548: Design road (三分)

题意:需要从(0,0) 点 到(x,y) 修一段路 其中有n条和y轴平行的河 修路的单位成本c1 修桥的单位成本c2 问最小总成本为多少 思路:把所有河合并 再三分桥的长度 求出最小成本 #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #include<stdlib.h> #include<algorithm> #include<queu

HDU 2438 Turn the corner (计算几何 + 三分)

Turn the corner Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2059    Accepted Submission(s): 785 Problem Description Mr. West bought a new car! So he is travelling around the city. One day h

三分查找

我们都知道 二分查找 适用于单调函数中逼近求解某点的值. 如果遇到凸性或凹形函数时,可以用三分查找求那个凸点或凹点. 下面的方法应该是三分查找的一个变形. 如图所示,已知左右端点L.R,要求找到白点的位置. 思路:通过不断缩小 [L,R] 的范围,无限逼近白点. 做法:先取 [L,R] 的中点 mid,再取 [mid,R] 的中点 mmid,通过比较 f(mid) 与 f(mmid) 的大小来缩小范围. 当最后 L=R-1 时,再比较下这两个点的值,我们就找到了答案. 1.当 f(mid) >

POJ 3301 Texas Trip (三分)

题目链接 题意 : 给你若干个点,让你找最小的正方形覆盖这所有的点.输出面积. 思路 : 三分枚举正方形两对边的距离,然后求出最大,本题用的是旋转正方形,也可以用旋转点,即点的相对位置不变. 正方形从0度到180度变化的过程中,把所有点覆盖,面积肯定是有一个最小峰值,是一个凸函数.因此可以用三分法解决.这里有一个难点就是已知两个定点的x,y坐标,过这两个点做两条平行线,平行线并与x轴成d度的角,怎么算出两条平行线的距离. d1 = fabs(cos(d)*(yi-yj)-sin(d)*(xi-x