How far away ?
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6252 Accepted Submission(s): 2344
Problem Description
There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always
unique, since the roads are built in the way that there is a unique simple path("simple" means you can‘t visit a place twice) between every two houses. Yout task is to answer all these curious people.
Input
First line is a single integer T(T<=10), indicating the number of test cases.
For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road
connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
Output
For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
Sample Input
2
3 2
1 2 10
3 1 15
1 2
2 3
2 2
1 2 100
1 2
2 1
Sample Output
10
25
100
100
Source
ECJTU 2009 Spring Contest
题目大意:一个村庄有N个房子和一些双向的路,人们总是喜欢问"A到B有多远呢",一般是很难
回答的,毕竟有很多种答案。所幸,答案是唯一的,A到B总是有唯一的路径到达。第一行是T组
数据。每组数据第一行是N个房子和M条询问。接下来N-1行每行是u v w,表示从房子u到房子v
的距离是w。接下来是M行询问。每行是u v,表示询问房子u到房子v的距离,最后输出所有的询
问结果。
思路:整个村庄房子和路可看成一棵树,设根结点为房子1,询问u到房子v的距离,其实就是求u
到根结点的距离 + v到根结点的距离 - 2*(u,v)最近公共祖先到根结点的距离。这道题和POJ1986
是一样的,可参考:http://blog.csdn.net/lianai911/article/details/42300301
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> using namespace std; const int MAXN = 80080; const int MAXQ = 440; struct EdgeNode { int to; int next; int lca; }Edges[MAXN],QEdges[MAXQ]; int Head[MAXN],QHead[MAXN],father[MAXN],Dist[MAXN]; bool vis[MAXN]; int find(int x) { if(x != father[x]) father[x] = find(father[x]); return father[x]; } void LCA(int u) { father[u] = u; vis[u] = true; for(int k = Head[u]; k != -1; k = Edges[k].next) { if(!vis[Edges[k].to]) { Dist[Edges[k].to] = Dist[u] + Edges[k].lca; LCA(Edges[k].to); father[Edges[k].to] = u; } } for(int k = QHead[u]; k != -1; k = QEdges[k].next) { if(vis[QEdges[k].to]) { QEdges[k].lca = Dist[u] + Dist[QEdges[k].to] - 2*Dist[find(QEdges[k].to)]; QEdges[k^1].lca = QEdges[k].lca; } } } int main() { int T,N,M,u,v,w; scanf("%d",&T); while(T--) { scanf("%d%d",&N,&M); memset(Dist,0,sizeof(Dist)); memset(father,0,sizeof(father)); memset(vis,false,sizeof(vis)); memset(Edges,0,sizeof(Edges)); memset(QEdges,0,sizeof(QEdges)); memset(Head,-1,sizeof(Head)); memset(QHead,-1,sizeof(QHead)); int id = 0; for(int i = 0; i < N-1; ++i) { scanf("%d%d%d",&u,&v,&w); Edges[id].to = v; Edges[id].lca = w; Edges[id].next = Head[u]; Head[u] = id++; Edges[id].to = u; Edges[id].lca = w; Edges[id].next = Head[v]; Head[v] = id++; } int ip = 0; for(int i = 0; i < M; ++i) { scanf("%d%d",&u,&v); QEdges[ip].to = v; QEdges[ip].next = QHead[u]; QHead[u] = ip++; QEdges[ip].to = u; QEdges[ip].next = QHead[v]; QHead[v] = ip++; } LCA(1); for(int i = 0; i < ip; i += 2) printf("%d\n",QEdges[i].lca); } return 0; }