SPSS-如何进行多元线性回归预测

http://jingyan.baidu.com/article/4e5b3e1955c89391901e24d0.html

在数据分析行业内,最困难的一项工作就是对未来的某项变化进行预测,以下给各位分享如何利用多元线性回归模型对因变量进行预测:

步骤:

  1. 建立预测模型:这里模型为:本例中收集了某地区过去16年的蛾量、卵量、降水量、雨日以及幼虫密度的历史数据,这里蛾量、卵量、降水量和雨日可以统计得到,因此需要这4个自变量来预测因变量幼虫密度,这里建立模型Y=a+x1*b1+x2*b2+x3*b3+x4*b4,其中Y 表示幼虫密度,a为随机误差,x1为蛾量,b1为蛾量的影响系数,x2为卵量,b2为卵量的影响系数,x3为降水量,b3为降水量的影响系数,x4为雨日,b4为雨日的影响系数。
  2. 打开SPSS并打开数据:方法如下:
  3. SPSS分析数据:方法如下图:
  4. 设置回归分析各项参数:如下图:

    点击“统计量(S)",设置方法如下:       点击“绘制(T)”,设置方法如下图:        点击“保存(S)”,设置方法如下:         点击“选项(O)”,设置方法如下:

    设置好上面的各个选项后,点击“确定”,开始分析数据!

  5. 分析结果解读:如下图:

    统计的基本信息:

    模型拟合度分析:

    显著性分析:

    模型系数分析:

  6. 应用回归分析结果:Y=-3.928+X1*0.013+X2*0.019+X3*0.183+X4*2.478
时间: 2024-11-25 13:26:07

SPSS-如何进行多元线性回归预测的相关文章

线性回归预测波士顿房价

预测波士顿的房价,上次已经通过房间数目预测了房价,这次用多元线性回归预测. 根据之前推导的多元线性回归的参数 接下来是多元线性回归的代码实现 def LinearRegression_(x,y): np.array(x) np.array(y) a = (np.linalg.inv(x.T.dot(x))).dot(x.T).dot(y) 上次大致了解了得个feature的name.下面是‘ZN’和‘RM’的散点图(由于我比较懒所以只实现这两个) 我们可以看出每个特征的数据范围相差较大,为了加快

R语言 多元线性回归分析

#线性模型中有关函数#基本函数 a<-lm(模型公式,数据源) #anova(a)计算方差分析表#coef(a)提取模型系数#devinace(a)计算残差平方和#formula(a)提取模型公式#plot(a)绘制模型诊断图#predict(a)用作预测#print(a)显示#residuals()计算残差#setp()逐步回归分析#summary()提取模型资料 #多元线性回归分析 #回归系数的估计 #显著性检验: 1回归系数的显著性检验 t检验 就是检验某个变量系数是否为0 2回归方程的显

C# chart.DataManipulator.FinancialFormula()公式的使用 线性回归预测方法

最近翻阅资料,找到 chart.DataManipulator.FinancialFormula()公式的使用,打开另一扇未曾了解的窗,供大家分享一下. 一 DataManipulator类 运行时,执行数据操作.此类是通过chart中DataManipulator属性对外公开的. 在C#中的继承关系如下: System.Object System.Web.UI.DataVisualization.Charting.DataFormula System.Web.UI.DataVisualizat

多元线性回归分析浅谈

  回归分析方法说白了就是处理多个变量相互依赖关系的一种数理统计方法(之前并没学过数理统计,恶补了一下,挺爽的~).这篇随笔中主要运用了线性代数和数理统计知识,欢迎各方大佬指正,错误之处,不胜感激. 一.建立模型 这里我们假定研究变量Y与x1,x2,x3--xm,m个变量之间的相互依赖关系.采取现实生活中观测的n组变量Y与变量x数据,建立如下方程组: yi=β0+β1xi1+β2xi2+--βmxim+εi(i=1,2,3--n) 即:Y=Cβ+ε 为弥补建立的方程组与实际数据的误差,引入ε为随

利用R进行多元线性回归分析

对于一个因变量y,n个自变量x1,...,xn,要如何判断y与这n个自变量之间是否存在线性关系呢? 肯定是要利用他们的数据集,假设数据集中有m个样本,那么,每个样本都分别对应着一个因变量和一个n维的自变量: m个样本,就对应着一个m维的列向量Y,一个m×n维的矩阵X Y是X的每一列X1,...,Xn的函数 那么,Y与X1,...,Xn之间到底是什么关系呢?是满足Y=a1*X1+...+an*Xn这样的线性关系还是Y=f(X1,...,Xn)这样的非线性关系呢? 为了解决这个问题,可以首先利用多元

[What-Why-How] 线性回归预测

What 现有多个变量X1, X2, X3, ....会对结果数据Y产生影响,现在要求出这些变量Xn对于最终结果的影响权重.找到一个线(两个变量),面(三个变量)来拟合这些权重的数值.通过训练数据得到这些参数,然后使用这些参数(模型)对新数据进行预测 例如,拟合一个平面: 其中 θ0表示预置的权重参数. 误差 真实值和预测值之间肯定是要存在差异的 误差是独立并且具有相同分布,并且服从均值为0方差为θ2的高斯分布(正态分布) 似然函数:,什么样的参数跟我们的数据组合后恰好时真实值.  样本数据 -

tensorflow线性回归预测鲍鱼数据

代码如下: import tensorflow as tf import csv import numpy as np import matplotlib.pyplot as plt # 设置学习率 learning_rate = 0.01 # 设置训练次数 train_steps = 1000 #数据地址:http://archive.ics.uci.edu/ml/datasets/Abalone with open('./data/abalone.data') as file: reader

SPSS19.0实战之多元线性回归

线性回归数据来自于国泰安数据服务中心的经济研究数据库.网址:http://www.gtarsc.com/p/sq/.数据名称为:全国各地区能源消耗量与产量,该数据的年度标识为2006年,地区包括我国30个省,直辖市,自治区(西藏地区无数据). 1.1 数据预处理 数据预处理包括的内容非常广泛,包括数据清理和描述性数据汇总,数据集成和变换,数据归约,数据离散化等.本次实习主要涉及的数据预处理只包括数据清理和描述性数据汇总.一般意义的数据预处理包括缺失值填写和噪声数据的处理.于此我们只对数据做缺失值

快速掌握SPSS数据分析

SPSS难吗?无非就是数据类型的区别后,就能理解应该用什么样的分析方法,对应着分析方法无非是找一些参考资料进行即可.甚至在线网页SPSS软件直接可以将数据分析结果指标人工智能地分析出来,这有多难呢?本文章将周老师(统计学专家)8年的数据分析经验浓缩,便于让不会数据分析的同学,在学习数据分析的过程中可以少走弯路,树立数据分析价值观,以及以数据进行决策的思维意识,并且可以快速的掌握数据分析.本文章分为四个板块进行说明,一是数据分析思维的培养.二是数据间的几类关系情况.三是数据分析方法的选择.四是数据