C++负数取模

预习:

r=余数

a=被除数

b=除数

c=商

a/b=c........r

r=a-(a/b)*b

一、下面的题目你能全做对吗?
1.7/4=?
2.7/(-4)=?
3.7%4=?
4.7%(-4)=?
5.(-7)/4=?
6.(-7)%4=?
7.(-7)/(unsigned)4=?
答案:
1
-1
3
3
-1
-3
1073741822
如过你全部答对,你可以无视后面的内容……

二、除法的取整分类
除法的取整分为三类:向上取整、向下取整、向零取整。
1.向上取整:向+∞方向取最接近精确值的整数。

在这种取整方式下,7/4=2,7/(-4)=-1,6/3=2,6/(-3)=-2
2.向下取整:向-∞方向取最接近精确值的整数。

在这种取整方式下,7/4=1,7/(-4)=-2,6/3=2,6/(-3)=-2
3.向零取整:向0方向取最接近精确值的整数,换言之就是舍去小数部分,因此又称截断取整。

在这种取整方式下,7/4=1,7/(-4)=-1,6/3=2,6/(-3)=-2
通过观察可以发现,无论是向上取整还是向下取整,(-a)/b==-(a/b)都不一定成立。

这给程序设计者带来了极大的麻烦。

而对于向零取整,(-a)/b==-(a/b)是成立的,以此,C/C++采用这种取整方式。

三、负数取模
回想小学的公式:被除数÷除数=商……余数。
由此可知,余数=被除数-商×除数 (*)
对C/C++而言,(*)式依然成立。并且,该式是解决负数取模问题的关键。
例一:7%(-4)=?
解:由C/C++向零取整的整除方式可知,7/(-4)=-1;

由(*)式知,余数=7-(-4)*(-1)=3.所以,7%(-4)=3
例二:(-7)%4=?
解:由C/C++向零取整的整除方式可知,(-7)/4=-1;

由(*)式知,余数=(-7)-4*(-1)=-3.所以,(-7)%4=-3
例三:(-7)%(-4)=?
解:由C/C++向零取整的整除方式可知,(-7)/(-4)=1;

由(*)式知,余数=(-7)-(-4)*1=-3.所以,(-7)%(-4)=-3

四、相关知识的拓展
1.对于有符号整数与无符号整数间的除法,C/C++会将有符号整数转换为无符号整数,需要特别注意的是,符号位并没有丢失,而是变成了数据位参与运算。这就是(-7)/(unsigned)4不等于-1,而等于1073741822的原因。
2.编译器对除法的优化
①在“无优化”条件下,编译器会在不影响正常调试的前提下,对除法进行简单的优化。
A.“常量/常量”型除法:编译器会直接计算出结果。
B.“变量/变量”型除法:无优化。
C.“变量/常量”型除法:若常量≠2^n,无优化;否则,除法将被转换为右移运算。由于由右移运算实现的整除实质上是向下取整,所以编译器会通过一些附加的指令在不产生分支结构的情况下将向下取整转换为向零取整。

以【变量/2^3】为例,反汇编代码如下:
mov eax,被除数
cdq ;若eax<0,则edx=0xFFFFFFFF;否则edx=0
and edx,7 ;若eax<0,则edx=7;否则edx=0
add eax,edx ;若eax<0,【(eax+7)/(2^3)】向下取整的值 与 【eax/(2^3)】向零取整的值相等,从而实现向零取整
sar eax,3 ;右移,完成除法
②在“O2优化”条件下,“变量/常量”型除法中,常量若≠2^n,也可以优化。此时,除法将被转换为乘法与右移的结合形式。例如,a/b=a*(1/b)=a*((2^n)/b)*(1/(2^n)),其中,((2^n)/b为MagicNumber,由编译器在编译过程中算出。这样a/b就变成了(a*MagicNumber)>>n,n的值由编译器选取。需要注意的是,本公式只是除法优化中的一个典型代表,编译器会根据除数对公式进行调整,但基本形式与原理是类似的。

转载地址:http://tieba.baidu.com/p/1881961036

——————————————————————————————————————————

以下摘录自C++ Primer(P130)

操作符%称为“求余”或“求模”操作符,该操作符的操作数只能为整型。

如果两个操作数为正,结果也为正;如果两个操作数都为负数,结果也为负数;如果一个操作数为正数,一个操作数为负数,求模结果的符号取决于机器。

当操作数中有一个为负,一个为正是,求模操作结果值的符号可依据分子(被除数)或分母(除数)的符号而定。如果求模的结果随分子的符号,则除出来的值向零一侧取整;如果求模与分母的符号匹配,则除出来的值向负无穷大一侧取整。

时间: 2024-10-21 22:45:12

C++负数取模的相关文章

CodeForces 450B (矩阵快速幂模板题+负数取模)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N项.注意负数取模的方式:-1%(10^9+7)=10^9+6. 解题思路: 首先解出快速幂矩阵.以f3为例. [f2]  * [1 -1] = [f2-f1]=[f3]  (幂1次) [f1]  * [1  0]     [f2]      [f2] 于是fn=[f2] *[1 -1]^(n-2)

【转】C/C++除法实现方式及负数取模详解

原帖:http://blog.csdn.net/sonydvd123/article/details/8245057 一.下面的题目你能全做对吗?1.7/4=? 2.7/(-4)=? 3.7%4=? 4.7%(-4)=? 5.(-7)/4=? 6.(-7)%4=? 7.(-7)/(unsigned)4=? 答案: 1 -1 3 3 -1 -3 1073741822 如过你全部答对,你可以无视后面的内容-- 二.除法的取整分类除法的取整分为三类:向上取整.向下取整.向零取整. 1.向上取整:向+∞

C/C++除法实现方式及负数取模详解

一.下面的题目你能全做对吗? 1.7/4=? 2.7/(-4)=? 3.7%4=? 4.7%(-4)=? 5.(-7)/4=? 6.(-7)%4=? 7.(-7)/(unsigned)4=? 答案: 1 -1 3 3 -1 -3 1073741822 如过你全部答对,你可以无视后面的内容-- 二.除法的取整分类 除法的取整分为三类:向上取整.向下取整.向零取整. 1.向上取整:向+∞方向取最接近精确值的整数.在这种取整方式下,7/4=2,7/(-4)=-1,6/3=2,6/(-3)=-2 2.向

信息安全-3:负数取模[转]

背景 最近在一道 Java 习题中,看到这样的一道题: What is the output when this statement executed:System.out.printf(-7 % 3); 正整数的取余运算大家都很熟悉,但是对于负数.实数的取余运算,确实给人很新鲜的感觉.于是我对此进行了一些探索.我发现,这里面还是颇有一点可以探索的东西的. 探究 首先,看看自然数的取模运算(定义1): 如果a和d是两个自然数,d非零,可以证明存在两个唯一的整数 q 和 r,满足 a = qd +

负数取模

本文转载于:http://blog.sina.com.cn/s/blog_6f5c63ff0100tucb.html 我们知道,在不同的语言中,对负数执行取模运算,结果有可能会是不同的.例如,(-11)%5在python中计算的结果是4,而在C(C99)中计算的结果则是-1. truncate除法 && floor除法 在大多数编程语言中,如果整数a不是整数b的整数倍数的话,那么a.b做除法产生的实际结果的小数部分将会被截除,这个过程称为截尾(truncation).如果除法的结果是正数的

python中的负数取模问题(一个大坑)

先来看一段代码 这是什么情况?为什么会出现这种结果.我们再来看看其它语言的执行结果 我们用golang.js.c分别算了一下,结果得到的结果都是一致的,但是python为啥不一样呢? 其实之所以这么做是python有意而为之,因为python对于正负号不同的两个值的除法处理方式和其它流行语言不一样.这就要考虑到机器是如何计算商和余数的,以10 % 3为例,先算10 / 3 = 3.333,然后取整得到3,也就是商,然后10 - 3 * 3=1,因此对于两个正数相除是没有疑问的,一样的结果. 但是

-1对256取模

今天看c++primer5遇到了这个-1对256取模,负数取模还真的不清楚,所以查了查资料,供大家参考. 原文是这样说的:C++中,把负值赋给unsigned 对象是完全合法的,其结果是初始值对无符号类型表示数值总数取模后的余数.所以,如果把-1赋给8位的unsigned char,那么结果是255,因为255是-1对256求模后的值. 1.从数学角度解读: 取模运算时,对于负数,应该加上被除数的整数倍,使结果大于或等于0之后,再进行运算. 也就是:(-1)%256 = (-1+256)%256

大整数取模运算出现运算结果负数的解决方案

首先我们看个例子 <?php echo 12121212121 % 1000000; //结果为 -689767 //实际应该为12121 ?> 这里的取模运算(取余数)出现了BUG.那么需要声明一下,负数也是可以取模操作的,并不是出现负数就是不对的我们应该把这种长整数类型看成float型数据进行处理介绍一个函数float fmod ( float $x , float $y )返回除法的浮点数余数通过这个函数的运算,就可以得到原本想要的余数结果 <?php $a = floatval(

分数的乘法逆元和负数的取模运算

1.乘法逆元 A.定义 如果ax≡1 (mod p),且gcd(a,p)=1(a与p互质),则称a关于模p的乘法逆元为x. 既然有ax≡1 (mod p),那么有ax - py = 1,x是a关于模p的乘法逆元. B.分数的乘法逆元 对于实数域,一个数的乘法逆元就是其倒数,所谓乘法逆元就是相乘等于单位元的那个数. 对于ecc算法的离散曲线域,m的乘法逆元为n,满足m * n = 1 (mod p),即满足m*n mod p = 1 mod p,称作n就是m关于的p乘法逆元.在离散曲线域中,单位元