机器学习算法 - PCA理论分析

      主元分析(PCA)理论分析及应用

      转载:http://www.360doc.com/content/10/0318/20/1024901_19297267.shtml

时间: 2025-01-01 12:06:18

机器学习算法 - PCA理论分析的相关文章

机器学习算法-PCA降维技术

机器学习算法-PCA降维 一.引言 在实际的数据分析问题中我们遇到的问题通常有较高维数的特征,在进行实际的数据分析的时候,我们并不会将所有的特征都用于算法的训练,而是挑选出我们认为可能对目标有影响的特征.比如在泰坦尼克号乘员生存预测的问题中我们会将姓名作为无用信息进行处理,这是我们可以从直观上比较好理解的.但是有些特征之间可能存在强相关关系,比如研究一个地区的发展状况,我们可能会选择该地区的GDP和人均消费水平这两个特征作为一个衡量指标.显然这两者之间是存在较强的相关关系,他们描述的都是该地区的

机器学习算法-Apriori关联分析

引文: 学习一个算法,我们最关心的并不是算法本身,而是一个算法能够干什么,能应用到什么地方.很多的时候,我们都需要从大量数据中提取出有用的信息,从大规模数据中寻找物品间的隐含关系叫做关联分析(association analysis)或者关联规则学习(association rule learning).比如在平时的购物中,那些商品一起捆绑购买销量会比较好,又比如购物商城中的那些推荐信息,都是根据用户平时的搜索或者是购买情况来生成的.如果是蛮力搜索的话代价太高了,所以Apriori就出现了,就是

机器学习资料《分布式机器学习算法理论与实践》+《白话机器学习算法》+《Python机器学习基础教程》

机器学习正在迅速改变我们的世界.我们几乎每天都会读到机器学习如何改变日常的生活. 人工智能和大数据时代,解决最有挑战性问题的主流方案是分布式机器学习! <分布式机器学习:算法.理论与实践>电子书资料全面介绍分布式机器学习的现状,深入分析其中的核心技术问题,并且讨论该领域未来的发展方向. 我认为第3章到第8章是核心,讲解分布式机器学习的框架及其各个功能,分别针对其中的数据与模型划分模块.单机优化模块.通信模块.数据与模型聚合模块加以介绍.最有用的是第9章,学习由分布式机器学习框架中不同选项所组合

建模分析之机器学习算法(附python&amp;R代码)

0序 随着移动互联和大数据的拓展越发觉得算法以及模型在设计和开发中的重要性.不管是现在接触比较多的安全产品还是大互联网公司经常提到的人工智能产品(甚至人类2045的的智能拐点时代).都基于算法及建模来处理.     常见的词汇:机器学习.数据建模.关联分析.算法优化等等,而这些种种又都是基于规律的深度开发(也难怪道德经的首篇就提出道可道非常道,名可名非常名的说法),不管是线性还是非线性,总之存在关联关系,而我们最好理解的就是线性关系,简单的用个函数就能解决.比如我们生活中应用的比较的归纳总结,其

从软件工程的角度写机器学习3——主要监督学习算法的工程性分析

主要机器学习算法的工程适用性分析 前段时间AlphaGo跟李世石的大战及相关的深度学习的新闻刷了一遍又一遍的朋友圈.不过这件事情,也只是在机器学习的深度上进一步拓展,而机器学习的广度(也即工程化实践)上,仍然没有什么突破性的理论或实践,用的领域继续用,不用的领域依然不用. 工程性分析的作用 工程上的琐事 机器学习的使命是使计算机强大的运算能力和存储能力转化为推演能力,能转化是一方面,转化的效率则是另一方面.科研性质的AlphaGo,拥有近乎无限的计算资源,不用太考虑这方面的问题,但在我们实际的工

【机器学习算法-python实现】PCA 主成分分析、降维

1.背景 PCA(Principal Component Analysis),PAC的作用主要是降低数据集的维度,然后挑选出主要的特征. PCA的主要思想是移动坐标轴,找到方差最大的方向上的特征值,什么叫方差最大的方向的特征值呢.就像下图中的曲线B,一样,它的覆盖范围最广. 基本步骤:(1)首先计算数据集的协方差矩阵 (2)计算协方差矩阵的特征值和特征向量 (3)保留最重要的n个特征 what is 协方差矩阵: 定义是变量向量减去均值向量,然后乘以变量向量减去均值向量的转置再求均值.例如x是变

《分布式机器学习:算法、理论与实践》PDF+刘铁岩+资料学习

<分布式机器学习:算法.理论与实践>旨在全面介绍分布式机器学习的现状,深入分析其中的核心技术问题,并且讨论该领域未来的发展方向. 下载:https://pan.baidu.com/s/1XeOGCQK5qWCba8VK0KU21w<分布式机器学习:算法.理论与实践>PDF,273页,带书签目录,文字可以复制. 人工智能和大数据时代,解决最有挑战性问题的主流方案是分布式机器学习! <分布式机器学习:算法.理论与实践>旨在全面介绍分布式机器学习的现状,深入分析其中的核心技术

【机器学习算法应用和学习_2_理论篇】2.2 M_分类_逻辑回归

一.原理阐述 算法类型:监督学习_分类算法 输入:数值型或标称型(标称型需要独热编码) V1.0 用回归方式解决二分类问题,通过引入一个Sigmoid函数将中间y值映射到实际二分类的y值上. 二.算法选择 三.算法过程 1.Sigmoid函数是一个x值域是(-∞,+∞),y值域是(0,1)的单调递增函数: 2.预测y值>0.5为1类,<0.5为0类,y值也可以解释为为1和0类的概率: 3.同样使用“最小二乘”概念,求得最佳方程,得到目标函数: 4.要使得目标函数达到最小,需要采用一种称为“梯度

机器学习day16 机器学习实战Apriori算法进行关联分析

上一章学习了非监督学习的聚类,聚类算法可以将不同性质的分类分开.这两天学习了apriori算法进行关联分析,感觉是目前最难理解的一章了,并且书中还有个很坑爹的错误,作者存在很大的疏忽. Apriori算法关联分析:从大规模数据集中寻找物品间的隐含关系被称作关联分析或者关联规则学习. 关联分析应用1:我们以前学习的是根据特性进行分类或者回归预测,并没有挖掘特性之间的关系,关联分析可以用于分析数据集中特性之间的关系,可以得到哪些特性频繁的共同出现或者特性之间的关系(比如出现特性A就会很大几率出现特性