HashMap结构及使用

HashMap的数据结构

HashMap主要是用数组来存储数据的,我们都知道它会对key进行哈希运算,哈系运算会有重复的哈希值,对于哈希值的冲突,HashMap采用链表来解决的。在HashMap里有这样的一句属性声明:

transient Entry[] table;

Entry就是HashMap存储数据所用的类,它拥有的属性如下

final K key;
V value;
final int hash;
Entry<K,V> next;

看到next了吗?next就是为了哈希冲突而存在的。比如通过哈希运算,一个新元素应该在数组的第10个位置,但是第10个位置已经有Entry,那么好吧,将新加的元素也放到第10个位置,将第10个位置的原有Entry赋值给当前新加的 Entry的next属性。数组存储的是链表,链表是为了解决哈希冲突的,这一点要注意。

几个关键的属性
存储数据的数组

transient Entry[] table; 这个上面已经讲到了
默认容量
static final int DEFAULT_INITIAL_CAPACITY = 16;
最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;

默认加载因子,加载因子是一个比例,当HashMap的数据大小>=容量*加载因子时,HashMap会将容量扩容

static final float DEFAULT_LOAD_FACTOR = 0.75f;

当实际数据大小超过threshold时,HashMap会将容量扩容,threshold=容量*加载因子

int threshold;

加载因子

final float loadFactor;

HashMap的初始过程
构造函数1

public HashMap(int initialCapacity, float loadFactor) {
  if (initialCapacity < 0)
    throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
  if (initialCapacity > MAXIMUM_CAPACITY)
    initialCapacity = MAXIMUM_CAPACITY;
  if (loadFactor <= 0 || Float.isNaN(loadFactor))
    throw new IllegalArgumentException("Illegal load factor: " +loadFactor);

  // Find a power of 2 >= initialCapacity
  int capacity = 1;
  while (capacity < initialCapacity)
    capacity <<= 1;

  this.loadFactor = loadFactor;
  threshold = (int)(capacity * loadFactor);
  table = new Entry[capacity];
  init();
}

重点注意这里

while (capacity < initialCapacity)
  capacity <<= 1;

capacity才是初始容量,而不是initialCapacity,这个要特别注意,如果执行new HashMap(9,0.75);那么HashMap的初始容量是16,而不是9,想想为什么吧。

构造函数2

public HashMap(int initialCapacity) {
   this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

构造函数3,全部都是默认值

public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
    table = new Entry[DEFAULT_INITIAL_CAPACITY];
    init();
}

构造函数4

public HashMap(Map<? extends K, ? extends V> m) {
    this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
    DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
    putAllForCreate(m);
}

如何哈希
HashMap并不是直接将对象的hashcode作为哈希值的,而是要把key的hashcode作一些运算以得到最终的哈希值,并且得到的哈希值也不是在数组中的位置哦,无论是get还是put还是别的方法,计算哈希值都是这一句:

int hash = hash(key.hashCode());

hash函数如下:

static int hash(int h) {
    return useNewHash ? newHash(h) : oldHash(h);
}

useNewHash声明如下:

private static final boolean useNewHash;
static { useNewHash = false; }

这说明useNewHash其实一直为false且不可改变的,hash函数里对 useNewHash的判断真是多余的。

private static int oldHash(int h) {
    h += ~(h << 9);
    h ^= (h >>> 14);
    h += (h << 4);
    h ^= (h >>> 10);
    return h;
}

private static int newHash(int h) {
    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).
    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}

其实HashMap的哈希函数会一直都是oldHash。

如果确定数据的位置
看下面两行

int hash = hash(k.hashCode());
int i = indexFor(hash, table.length);

第一行,上面讲过了,是得到哈希值,第二行,则是根据哈希指计算元素在数组中的位置了,位置的计算是将哈希值和数组长度按位与运算。

static int indexFor(int h, int length) {
  return h & (length-1);
}

put方法到底作了什么?

public V put(K key, V value) {
  if (key == null)
    return putForNullKey(value);
  int hash = hash(key.hashCode());
  int i = indexFor(hash, table.length);
  for (Entry<K,V> e = table[i]; e != null; e = e.next) {
    Object k;
    if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
      V oldValue = e.value;
      e.value = value;
      e.recordAccess(this);
      return oldValue;
    }
  }
  modCount++;
  addEntry(hash, key, value, i);
  return null;
}

如果key为NULL,则是单独处理的,看看putForNullKey方法:

private V putForNullKey(V value) {
    int hash = hash(NULL_KEY.hashCode());
    int i = indexFor(hash, table.length);

  for (Entry<K,V> e = table[i]; e != null; e = e.next) {
    if (e.key == NULL_KEY) {
      V oldValue = e.value;
      e.value = value;
      e.recordAccess(this);
      return oldValue;
    }
  }

  modCount++;
  addEntry(hash, (K) NULL_KEY, value, i);
  return null;
}    

NULL_KEY的声明:

static final Object NULL_KEY = new Object();

这一段代码是处理哈希冲突的,就是说,在数组某个位置的对象可能并不是唯一的,它是一个链表结构,根据哈希值找到链表后,还要对链表遍历,找出key相等的对象,替换它,并且返回旧的值。

for (Entry<K,V> e = table[i]; e != null; e = e.next) {
  if (e.key == NULL_KEY) {
    V oldValue = e.value;
    e.value = value;
    e.recordAccess(this);
    return oldValue;
  }
}

如果遍历完了该位置的链表都没有找到有key相等的,那么将当前对象增加到链表里面去

modCount++;
addEntry(hash, (K) NULL_KEY, value, i);
return null;

且看看addEntry方法

void addEntry(int hash, K key, V value, int bucketIndex) {
  Entry<K,V> e = table[bucketIndex];
  table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
  if (size++ >= threshold)
    resize(2 * table.length);
  }
  table[bucketIndex] = new Entry<K,V>(hash, key, value, e);新建一个Entry对象,并放在当前位置的Entry链表的头部,看看下面的 Entry构造函数就知道了,注意红色部分。
  Entry(int h, K k, V v, Entry<K,V> n) {
  value = v;
  next = n;
  key = k;
  hash = h;
}

如何扩容?

当put一个元素时,如果达到了容量限制,HashMap就会扩容,新的容量永远是原来的2倍。
上面的put方法里有这样的一段:

if (size++ >= threshold)
resize(2 * table.length);

这是扩容判断,要注意,并不是数据尺寸达到HashMap的最大容量时才扩容,而是达到 threshold指定的值时就开始扩容, threshold=最大容量*加载因子。 看看resize方法

void resize(int newCapacity) {
  Entry[] oldTable = table;
  int oldCapacity = oldTable.length;
  if (oldCapacity == MAXIMUM_CAPACITY) {
    threshold = Integer.MAX_VALUE;
    return;
  }

  Entry[] newTable = new Entry[newCapacity];
  transfer(newTable);
  table = newTable;
  threshold = (int)(newCapacity * loadFactor);
}

重点看看红色部分的 transfer方法

void transfer(Entry[] newTable) {
  Entry[] src = table;
  int newCapacity = newTable.length;
  for (int j = 0; j < src.length; j++) {
    Entry<K,V> e = src[j];
    if (e != null) {
      src[j] = null;
      do {
        Entry<K,V> next = e.next;
        int i = indexFor(e.hash, newCapacity);
        e.next = newTable[i];
        newTable[i] = e;
        e = next;
      } while (e != null);
    }
  }
}

tranfer方法将所有的元素重新哈希,因为新的容量变大,所以每个元素的哈希值和位置都是不一样的。

正确的使用HashMap
1:不要在并发场景中使用HashMap
HashMap是线程不安全的,如果被多个线程共享的操作,将会引发不可预知的问题,据sun的说法,在扩容时,会引起链表的闭环,在get元素时,就会无限循环,后果是cpu 100%。
看看get方法的红色部分

public V get(Object key) {
  if (key == null)
    return getForNullKey();
  int hash = hash(key.hashCode());
  for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) {
    Object k;
    if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
      return e.value;
  }
  return null;
}

2:如果数据大小是固定的,那么最好给HashMap设定一个合理的容量值

根据上面的分析,HashMap的初始默认容量是16,默认加载因子是0.75,也就是说,如果采用HashMap的默认构造函数,当增加数据时,数据实际容量超过16*0.75=12时,HashMap就扩容,扩容带来一系列的运算,新建一个是原来容量2倍的数组,对原有元素全部重新哈希,如果你的数据有几千几万个,而用默认的HashMap构造函数,那结果是非常悲剧的,因为HashMap不断扩容,不断哈希,在使用HashMap的场景里,不会是多个线程共享一个HashMap,除非对HashMap包装并同步,由此产生的内存开销和cpu开销在某些情况下可能是致命的。

转自:http://www.java3z.com/cwbwebhome/article/article8/81388.html?id=3973

时间: 2024-10-20 12:58:30

HashMap结构及使用的相关文章

Java源码解析之HashMap

一.HashMap类声明: HashMap继承于AbstractMap并且实现了接口Map,Cloneable,Serializable. public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {} 二.HashMap类层次: HashMap实现了三个接口,继承一个抽象类.除此之外我们应该知道Object是所有类的超类.之所以有一个A

HashMap数据结构

2.1 HashMap 2.1.1 HashMap介绍 先看看HashMap类头部的源码: public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable HashMap基于哈希表的 Map 接口的实现.此实现提供所有可选的映射操作,并允许使用 null 值和 null 键.(除了非同步和允许使用 null 之外,HashMap 类与 Hash

jdk1.8.0_45源码解读——HashMap的实现

jdk1.8.0_45源码解读——HashMap的实现 一.HashMap概述 HashMap是基于哈希表的Map接口实现的,此实现提供所有可选的映射操作.存储的是<key,value>对的映射,允许多个null值和一个null键.但此类不保证映射的顺序,特别是它不保证该顺序恒久不变.  除了HashMap是非同步以及允许使用null外,HashMap 类与 Hashtable大致相同. 此实现假定哈希函数将元素适当地分布在各桶之间,可为基本操作(get 和 put)提供稳定的性能.迭代col

m2014-c-&gt;c模拟java的hashmap容器类

转自:http://bbs.csdn.net/topics/390034346 在java中像ArrayList,HashMap都是现成的,在java.util包中,用的时候直接import java.util.*就行了. 前几天写了一c版的ArrayList,同时欢迎大家指出问题:http://topic.csdn.net/u/20120429/18/4ab4bc02-2496-4d3c-8151-1cbe51e6fe9d.html?seed=425415324&r=78416084 今天有空

HashMap简单源码及多线程下的死循环

主要记录hashMap的一些基本操作源码实现原理以及多线程情况下get()操作的死循环引发原因 一.hashMap简介 1.hashMap集合的主要属性及方法 (默认初始化容量)DEFAULT_INITIAL_CAPACITY = 16 (默认最大容量)MAXIMUM_CAPACITY = 1 << 30 (默认加载因子)DEFAULT_LOAD_FACTOR = 0.75f (Entry数组)Entry[] table (Entry实例的数量)size put(K key, V value)

HashMap vs ConcurrentHashMap — 示例及Iterator探秘

如果你是一名Java开发人员,我能够确定你肯定知道ConcurrentModificationException,它是在使用迭代器遍历集合对象时修改集合对象造成的(并发修改)异常.实际上,Java的集合框架是迭代器设计模式的一个很好的实现. Java 1.5引入了java.util.concurrent包,其中Collection类的实现允许在运行过程中修改集合对象. ConcurrentHashMap是一个与HashMap很相似的类,但是它支持在运行时修改集合对象. 让我们通过一个简单的程序来

从数组到HashMap之算法解释

一.数组是什么? 忘了在哪本书里曾看到过类似这样的一句话"所有的数据结构都是数组的演化",想想其实是有道理的,因为计算机的内存其实就是线性的存储空间. Java示例代码:int[] array = new int[5] JVM执行时会在堆中分配10个字节的内存空间,看起来就是这样的: 这样的数据结构可以很方便地通过数组下标存取数据,但在查找时需要遍历数组,平均时间复杂度为O(n/2). 当数据量很大或者查找操作频繁的时候,这样的遍历操作几乎是不可接受的.那么,如何才能够在更短的时间内快

Java 笔记 -HashMap

HashMap使用的数据结构,专业术语"链表散列",代码实 /** * 定义了一个Entry的数组用来存储数据. */ transient Entry[] table; ```java /** * Entry是内部定义的类 */ static class Entry<K,V> implements Map.Entry<K,V> { /** * 定义了两个常量key,就是HashMap的key * value,key对应的value * next,下一个Entry

JDK1.8 HashMap源码分析

一.HashMap概述 在JDK1.8之前,HashMap采用数组+链表实现,即使用链表处理冲突,同一hash值的链表都存储在一个链表里.但是当位于一个桶中的元素较多,即hash值相等的元素较多时,通过key值依次查找的效率较低.而JDK1.8中,HashMap采用数组+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,这样大大减少了查找时间. 下图中代表jdk1.8之前的hashmap结构,左边部分即代表哈希表,也称为哈希数组,数组的每个元素都是一个单链表的头节点,链表是用来解