Spark RDD Action 简单用例(一)

collectAsMap(): Map[K, V]

返回key-value对,key是唯一的,如果rdd元素中同一个key对应多个value,则只会保留一个。/** * Return the key-value pairs in this RDD to the master as a Map. * * Warning: this doesn‘t return a multimap (so if you have multiple values to the same key, only *          one value per key is preserved in the map returned) * * @note this method should only be used if the resulting data is expected to be small, as * all the data is loaded into the driver‘s memory. */def collectAsMap(): Map[K, V]
scala> val rdd = sc.parallelize(List(("A",1),("A",2),("A",3),("B",1),("B",2),("C",3)),3)
rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[0] at parallelize at <console>:24

scala> rdd.collectAsMap
res0: scala.collection.Map[String,Int] = Map(A -> 3, C -> 3, B -> 2)   

countByKey(): Map[K, Long]

计算有多少个不同的key./** * Count the number of elements for each key, collecting the results to a local Map. * * Note that this method should only be used if the resulting map is expected to be small, as * the whole thing is loaded into the driver‘s memory. * To handle very large results, consider using rdd.mapValues(_ => 1L).reduceByKey(_ + _), which * returns an RDD[T, Long] instead of a map. */def countByKey(): Map[K, Long] = self.withScope {  self.mapValues(_ => 1L).reduceByKey(_ + _).collect().toMap}
scala> val rdd = sc.parallelize(List((1,1),(1,2),(1,3),(2,1),(2,2),(2,3)),3)
rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[5] at parallelize at <console>:24

scala> rdd.countByKey
res5: scala.collection.Map[Int,Long] = Map(1 -> 3, 2 -> 3)

countByValue()

计算不同的value个数,该函数首先通过map将每个元素转成(value,null)的key-value(value为null)对,然后调用countByKey进行统计。

/** * Return the count of each unique value in this RDD as a local map of (value, count) pairs. * * Note that this method should only be used if the resulting map is expected to be small, as * the whole thing is loaded into the driver‘s memory. * To handle very large results, consider using rdd.map(x =&gt; (x, 1L)).reduceByKey(_ + _), which * returns an RDD[T, Long] instead of a map. */def countByValue()(implicit ord: Ordering[T] = null): Map[T, Long] = withScope {  map(value => (value, null)).countByKey()}
scala> val rdd = sc.parallelize(List(1,2,3,4,5,4,4,3,2,1))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[18] at parallelize at <console>:24

scala> rdd.countByValue
res12: scala.collection.Map[Int,Long] = Map(5 -> 1, 1 -> 2, 2 -> 2, 3 -> 2, 4 -> 3)

lookup(key: K)

根据key值搜索所有的value./** * Return the list of values in the RDD for key `key`. This operation is done efficiently if the * RDD has a known partitioner by only searching the partition that the key maps to. */def lookup(key: K): Seq[V]
scala> val rdd = sc.parallelize(List(("A",1),("A",2),("A",3),("B",1),("B",2),("C",3)),3)
rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[3] at parallelize at <console>:24

scala> rdd.lookup("A")
res2: Seq[Int] = WrappedArray(1, 2, 3)

checkpoint()

将RDD数据根据设置的checkpoint目录保存至硬盘中。

/** * Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint * directory set with `SparkContext#setCheckpointDir` and all references to its parent * RDDs will be removed. This function must be called before any job has been * executed on this RDD. It is strongly recommended that this RDD is persisted in * memory, otherwise saving it on a file will require recomputation. */def checkpoint(): Unit
/*通过linux命令创建/home/check目录后,设置checkpoint directory*/
scala> sc.setCheckpointDir("/home/check")

scala> val rdd = sc.parallelize(List(("A",1),("A",2),("A",3),("B",1),("B",2),("C",3)),3)
rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[6] at parallelize at <console>:24

/*
*执行下面的代码会在/home/check目录下创建一个空的目录/home/check/5545e4ca-d53d-4d93-aaf4-fd3c74f1ea49
*/
scala> rdd.checkpoint

/*
执行count后会在上述目录下创建一个rdd目录,rdd目录下是数据文件
*/
scala> rdd.count
res5: Long = 6           
[[email protected] ~]# ll -a /home/check/5545e4ca-d53d-4d93-aaf4-fd3c74f1ea49/
total 8
drwxr-xr-x. 2 root root 4096 Sep  4 10:29 .
drwxr-xr-x. 3 root root 4096 Sep  4 10:29 ..
[[email protected] ~]# ll -a /home/check/5545e4ca-d53d-4d93-aaf4-fd3c74f1ea49/
total 12
drwxr-xr-x. 3 root root 4096 Sep  4 10:30 .
drwxr-xr-x. 3 root root 4096 Sep  4 10:29 ..
drwxr-xr-x. 2 root root 4096 Sep  4 10:30 rdd-6
[[email protected] ~]# ll -a /home/check/5545e4ca-d53d-4d93-aaf4-fd3c74f1ea49/rdd-6/
total 32
drwxr-xr-x. 2 root root 4096 Sep  4 10:30 .
drwxr-xr-x. 3 root root 4096 Sep  4 10:30 ..
-rw-r--r--. 1 root root  171 Sep  4 10:30 part-00000
-rw-r--r--. 1 root root   12 Sep  4 10:30 .part-00000.crc
-rw-r--r--. 1 root root  170 Sep  4 10:30 part-00001
-rw-r--r--. 1 root root   12 Sep  4 10:30 .part-00001.crc
-rw-r--r--. 1 root root  170 Sep  4 10:30 part-00002
-rw-r--r--. 1 root root   12 Sep  4 10:30 .part-00002.crc

collect()

返回RDD所有元素的数组。/** * Return an array that contains all of the elements in this RDD. * * @note this method should only be used if the resulting array is expected to be small, as * all the data is loaded into the driver‘s memory. */def collect(): Array[T]
scala> val rdd = sc.parallelize(1 to 10,3)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at parallelize at <console>:24

scala> rdd.collect
res8: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

toLocalIterator: Iterator[T]

返回一个包含所有算的迭代器。/** * Return an iterator that contains all of the elements in this RDD. * * The iterator will consume as much memory as the largest partition in this RDD. * * Note: this results in multiple Spark jobs, and if the input RDD is the result * of a wide transformation (e.g. join with different partitioners), to avoid * recomputing the input RDD should be cached first. */def toLocalIterator: Iterator[T]
scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24

scala> val it = rdd.toLocalIterator
it: Iterator[Int] = non-empty iterator

scala> while(it.hasNext){
     | println(it.next)
     | }
1
2
3
4
5
6
7
8
9
10

count()

返回RDD中元素的数量。/** * Return the number of elements in the RDD. */def count(): Long
scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
scala> rdd.count
res1: Long = 10

dependencies

返回该RDD的依赖RDD的地址。/** * Get the list of dependencies of this RDD, taking into account whether the * RDD is checkpointed or not. */final def dependencies: Seq[Dependency[_]]
scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:24
scala> val rdd1 = rdd.filter(_>3)
rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[1] at filter at <console>:26

scala> val rdd2 = rdd1.filter(_<6)
rdd2: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[2] at filter at <console>:28

scala> rdd2.dependencies
res2: Seq[org.apache.spark.Dependency[_]] = List([email protected])

partitions

以数组形式返回RDD各分区地址/** * Get the array of partitions of this RDD, taking into account whether the * RDD is checkpointed or not. */final def partitions: Array[Partition]
scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at <console>:24

scala> rdd.partitions
res4: Array[org.apache.spark.Partition] = Array([email protected], [email protected])

first()

返回RDD的第一个元素。/** * Return the first element in this RDD. */def first(): T
scala> val rdd = sc.parallelize(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[3] at parallelize at <console>:24
scala> rdd.first
res5: Int = 1

fold(zeroValue: T)(op: (T, T) => T)

使用zeroValue和每个分区的元素进行聚合运算,最后各分区结果和zeroValue再进行一次聚合运算。/** * @param zeroValue the initial value for the accumulated result of each partition for the `op` *                  operator, and also the initial value for the combine results from different *                  partitions for the `op` operator - this will typically be the neutral *                  element (e.g. `Nil` for list concatenation or `0` for summation) * @param op an operator used to both accumulate results within a partition and combine results *                  from different partitions */def fold(zeroValue: T)(op: (T, T) => T): T
scala> val rdd = sc.parallelize(1 to 5)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[6] at parallelize at <console>:24

scala> rdd.fold(10)(_+_)
res13: Int = 35
				
时间: 2024-10-16 01:54:40

Spark RDD Action 简单用例(一)的相关文章

Spark RDD Action 简单用例(二)

foreach(f: T => Unit) 对RDD的所有元素应用f函数进行处理,f无返回值./** * Applies a function f to all elements of this RDD. */def foreach(f: T => Unit): Unit scala> val rdd = sc.parallelize(1 to 9, 2) rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at p

Spark RDD Transformation 简单用例(三)

cache和persist 将RDD数据进行存储,persist(newLevel: StorageLevel)设置了存储级别,cache()和persist()是相同的,存储级别为MEMORY_ONLY.因为RDD的transformation是lazy的,只有action算子才会触发transformain真正的执行,如果一个rdd需要进行多次的action算子操作,最好能够使用cache或persist将rdd缓存至内存中,这样除第一次action会触发transformation操作,后

Spark RDD Transformation 简单用例(一)

map(func) /** * Return a new RDD by applying a function to all elements of this RDD. */ def map[U: ClassTag](f: T => U): RDD[U]  map(func) Return a new distributed dataset formed by passing each element of the source through a function func.  将原RDD中的

Spark RDD Transformation 简单用例(二)

aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are aggregated using the given combine

Spark RDD Action操作

reduce def reduce(f: (T, T) => T): T通过func函数聚集RDD中的所有元素,这个功能必须是可交换且可并联的 1 2 3 4 5 6 7 8 9 10 11 scala> val rdd1 = sc.makeRDD(1 to 10,2) rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[85] at makeRDD at <console>:24 scala> rdd1.r

spark RDD transformation与action函数巩固 (未完)

1.创建RDD val lines = sc.parallelize(List("pandas","i like pandas")) 2.加载本地文件到RDD val linesRDD = sc.textFile("yangsy.txt") 3.过滤 filter 需要注意的是 filter并不会在原有RDD上过滤,而是根据filter的内容重新创建了一个RDD val spark = linesRDD.filter(line => lin

Apache Spark RDD(Resilient Distributed Datasets)论文

Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5

Spark RDD使用详解1--RDD原理

RDD简介 在集群背后,有一个非常重要的分布式数据架构,即弹性分布式数据集(Resilient Distributed Dataset,RDD).RDD是Spark的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式来操作分布式数据集的抽象实现.RDD是Spark最核心的东西,它表示已被分区,不可变的并能够被并行操作的数据集合,不同的数据集格式对应不同的RDD实现.RDD必须是可序列化的.RDD可以cache到内存中,每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操

Apache Spark 2.2.0 中文文档 - Spark RDD(Resilient Distributed Datasets)

Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5