斐波那契数列三种实现(上台阶)-Python

1.递归

# 递归
def fibs(n):
    if n < 1:
        return 0
    elif n == 1:
        return 1
    return fibs(n - 2) + fibs(n - 1)

print(fibs(6))

2.循环

# 循环
def fibs(n):
    a = [1, 1]
    for i in range(n - 2):
        a.append(a[-2] + a[-1])
    return a[n-1]

print(fibs(6))
class Solution:
    def fib(self, n):
        if n==1 or n==2:
            return n
        a=1;b=2;c=3
        for i in range(3,n+1):
            c=a+b;a=b;b=c
        return c

3.组合数公式

设青蛙跳上n级台阶一共跳了z次,其中有x次是一次跳了两级,y次是一次跳了一级,则有z=x+y ,2x+y=n,对一个固定的x,利用组合可求出跳上这n级台阶的方法共有 
种方法 
又因为 x在区间[0,n/2]内,所以我们只需要遍历这个区间内所有的整数,求出每个x对应的组合数累加到最后的结果即可

class Solution:
    def climbStairs(self, n):
        def fact(n):
            result=1
            for i in range(1,n+1):
                result*=i
            return result
        total=0
        for i in range(n/2+1):
            total+=fact(i+n-2*i)/fact(i)/fact(n-2*i)
        return total
时间: 2024-11-13 22:33:25

斐波那契数列三种实现(上台阶)-Python的相关文章

Talking About斐波那契数列(三种实现方法)

一直学习数据结构和算法,虽然学的没有太好,但还是觉得应该做一些有意思的程序来实现以下~牛客网(大哥推荐,还有就是..不要问我大哥是谁~~)有剑指Offer系列很多的题目,不管是大神还是..应该去做一下,感受编程的魅力~~(首先承认自己还是有很多不足的地方,但尽量去完善每一行代码~)  废话少说,代码搞起~ import java.util.Scanner; /** * 现在要求输入一个整数n,请你输出斐波那契数列的第n项. * 斐波那契数列,又称黄金分割数列,指的是这样一个数列 0, 1, 1,

斐波那契数列两种时间复杂度

契数列 概述: 斐波那契数列,又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.--在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理.准晶体结构.化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以<斐波纳契数列季刊>为名的一份数学杂志,用于专门刊载这方面的研究成果. 求解: 求解斐波那契数列的F(n)有两种常用算法:递归算法和非递归算法.试分

计算斐波那契数列的性能对比:Python,Java,Go

??本文采用递归办法来计算斐波那契数列中的第38项,用于对于三种计算机语言的计算性能,这三种语言为:Python,Java,Go. ??我们采用递归法来求解斐波那契数列的第n项f(n),其算法描述如下: function fib(n) if n = 0 return 0 if n = 1 return 1 return fib(n ? 1) + fib(n ? 2) 对于公平起见,我们利用三种程序计算f(38),运行100遍,得到平均耗时,作为性能对比. ??Python程序如下: # -*-

斐波那契数列偶数项的和--Python

斐波那契数列(从第三项开始)的每一项的值均等于前两项之和.将第一项和第二项取1和2,那么数列的前10项将是:1,2,3,5,8,13,21,34,55,89……考虑斐波那契数列所有值不超过4000000的项,求出所有值为偶数的项的和.

斐波拉契数列(用JavaScript和Python实现)

1.用JavaScript 判断斐波拉契数列第n个数是多少 //需求:封装一个函数,求斐波那契数列的第n项 //斐波拉契数列 var n=parseInt(prompt("输入你想知道的斐波那契数列的第几位数")); document.write(f(n)); function f(n){ if (n>=3) { var a=1; var b=1; for(var i=3;i<=n;i++){ var temp=b; b=a+b ; a=temp; } return b;

斐波那契数列的三种时间复杂度

/*前边两个为一种做法*/ /*后边有另外的做法(差分方程以及利用矩阵去做)*/ //***************************************************//***************************************************//*************************************************** 第一种做法 这是2018王道数据结构考研复习指导的第一章思维拓展的题目. 关于斐波那契数列的简介:

实现斐波那契数列的三种方式

首先说说斐波那契数列:从文字上说,费波那西数列由0和1开始,之后的斐波那契系数就由之前的两数相加,数列形式如下:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,………………在数学上,是以递归的方法来定义:F(0)=0F(1)=1F(n)= F(n-1)+ F(n-2) 实现需求:输入序号n返回得到对应斐波那契数程序实现1——函数迭代 public int fnType1(int n)thro

几种复杂度的斐波那契数列的Java实现

一:斐波那契数列问题的起源 13世纪初期,意大利数论家Leonardo Fibonacci在他的著作Liber Abaci中提出了兔子的繁殖问题: 如果一开始有一对刚出生的兔子,兔子的长大需要一个月,长大后的兔子每个月能生产一对兔子,假设兔子不会死亡,那么一年后有多少只兔子? 不难看出每个月的兔子的总数可以用以下数列表示:1,1,2,3,5,8,13...... 二:最直观的算法 1.算法实现 通过观察我们不难发现斐波那契数列从第三项开始每一项都是前两项的和,因此我们不难总结出该数列的递推公式:

【Java】斐波那契数列(Fibonacci Sequence、兔子数列)的3种计算方法(递归实现、递归值缓存实现、循环实现)

斐波那契数列:0.1.1.2.3.5.8.13………… 他的规律是,第一项是0,第二项是1,第三项开始(含第三项)等于前两项之和. > 递归实现 看到这个规则,第一个想起当然是递归算法去实现了,于是写了以下一段: public class RecursionForFibonacciSequence { public static void main(String[] args) { System.out.println(recursion(10)); } public static double