机器学习--入门答疑

刚接触机器学习这一个月我都做了什么?

这一个月,从对机器学习充满好奇与畏惧,到对各种算法稍有理解以及围绕推荐场景的编码实践,算是对机器学习有了一个入门的体验。但是中间也踩过不少坑,比如啃过线性代数的教材、看过无聊的机器学习课程、追过高端的机器学习书籍、陷入一个算法无法自拔(最后也没整明白)...其实,学习机器学习没有那么难,也很容易走偏。谨以此文,作为ML入门小白的一个小小的参考...

本篇虽不是这一个月的流水账,但是基本按照下面的思路对着一个月做了一次总结:

  • 什么是机器学习?
  • 机器学习都有什么算法?
  • 个人对机器学习的三种境界理解
  • 推荐的学习路线
  • 推荐资源

希望读者有所收获,另外,如果文中有任何理解上的错误,还望指正!

什么是机器学习?

之前在没有具体接触到机器学习前,我大概对他有一个概念上的认识,觉得是一种很高级的算法,能让机器学会很多的事情,就像...《我的机器人女友》里那样!

或者是《机械公敌》里的智能机器人?...

但是,这些其实都是对机器学习的一种误解。机器学习并不是让机器像人一样会学习,而是通过一种固定的编程模式,对数据进行处理。按照百度的定义,它是这样的:

专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

其实机器学习就是通过一些前人总结的数据公式,帮我们简化了很多手工操作很麻烦甚至无法操作的事情。就举个身边很常见的例子,当你在淘宝搜索了某个宝贝后,之后的商品页面会为你推荐跟这个搜索相关的商品;再比汽车在经过司机的一段驾驶后,汽车自己能基于道路状况自动调整方向盘以及车速,实现无人驾驶;再如,家里的热水器会记录你使用热水的时间,提前一段时间烧水,而在其他时间不加热,以节省水电。这些都是机器学习,都是身边已经出现或者即将出现的场景,所以,机器学习其实就在我们身边。

机器学习都有哪些算法?

在机器学习中,算法可以按照多种维度进行分类,比如监督学习、无监督学习、强化学习等...让人看着就眼晕。

记得有一篇文章总结的就非常易懂,他认为机器学习其实可以分成三类,分类、回归、聚类。

  • 分类听着名字就很容易理解了,比如给你一筐水果,水果里面有苹果、香蕉,需要把它们分成两类。
  • 回归来源于单词regression,它可以理解成是一种预测,比如线性回归,他可以根据样本数据学习出一个线性的公式,比如y=ax,当你给定一个x的值时,可以推算出对应的y值。当然具体的场景中,就不是简单的一维了...
  • 聚类,跟前面的分类有些不同,比如一筐水果,你都不知道里面装的是什么,需要通过味道、颜色、形状、大小等多个属性,把它们进行归类。

结合到算法里面:

  • 分类相关的算法有:K-近邻算法、决策树、朴素贝叶斯、逻辑回归、支持向量机等
  • 回归相关的算法有:线性回归、树回归等
  • 聚类相关的算法有:K-均值算法、Apriori等

如果看过一遍《机器学习实战》,应该就会对上述的算法有一定的了解。不需要到公式推导级别,先能了解他们的用法即可,比如:

  • K-近邻就是已知几个分类,判断新的节点属于哪个分类时,只需要看距离它一定范围内,哪个分类的数据多。有点像近朱者赤近墨者黑的意思。
  • 决策树就是通过一大堆的问题,判断属于哪个分类。比如,相亲的时候,会问“你是做什么的?”“有没有房?”“有没有车?”——最后判断,是否继续交往。
  • 朴素贝叶斯看着名字高大上,其实就是根据概率选择,属于哪个分类的概率大,就归属这个分类
  • 逻辑回归它是把线性回归的结果映射到01区间
  • 线性回归可以简单的理解成y=ax,但是其实在多维空间比这个复杂得多
  • K-均值就是一大堆散落的点,随机几个中心,这些点按照距离选择他们最近的中心组成一个类别
  • Apriori只要说一个啤酒与尿布,大家就应该明白了。

这么多算法其实只是机器学习中的一部分....

机器学习的应用场景

机器学习的应用还是很广泛的,比如无人驾驶、机器人等等高大上的东西,以及咱们身边的拼车算法、电商的个性化推荐、婚恋网站的快速配偶等等。只要是涉及到数据之间的关系,都可以使用机器学习来达到很好的效果。

个人理解的机器学习的三种境界

这三种境界纯粹是个人的胡乱设定,仅仅是为了给自己的学习定下一个目标!

第一层 了解算法的过程和作用

这种一般是那些自学机器学习的朋友,在看过几本机器学习相关的书籍后,对所有的算法都有一点了解。能跟别讨论一些机器学习的算法和用途,并且能理解相关技术分享大致过程。

第二层 能把算法运用到实践中

这一层可以认为是对某个机器学习的库比较熟悉,能真正的利用机器学习来解决一些问题。比如可以使用Spark MLLib中的某个算法解决实际的问题,如基于物品或者用户的协同过滤算法。这就好像是使用现代的机械工具盖房子,而不是像过去纯人工搬石头垒长城,效率和产出上都要好的多。

第三层 对算法的推导融会贯通

这种可以说是集数学与计算机功底于一身,是倚天剑与屠龙刀的合体。对数学公式推导了如指掌,各种模型的优化也深谙其道。其实机器学习使用某个库出一个简单的效果很简单,但是想要对算法模型进行优化却很难,大多时候都是盯着算法结果,目瞪口呆,不知道下一步该怎么办。如果对算法了解的很深,对实际的业务又很熟悉,那么就能结合两点对算法模型进行优化,改进机器学习的结果。

个人学习机器学习的路线规划

经过不到一个月的学习,对机器学习也算是初步有了一定的了解,最起码知道机器学习能干什么了,所以现在还在处于上面的第一个境界....

这期间也走了不少的弯路,浪费了不少的时间。所以在这里总结一下,也给大家当做一个参考:

  • 1 最快的入门方式,就是先百度、必应一下,了解下机器学习的概念。
  • 2 推荐阅读《机器学习实战》了解下机器学习相关的算法。我之前也看过机械工业出版社的《机器学习》、也看过点周志华老师的《机器学习》,前一本概念太多,后一本公式也挺多。《机器学习实战》相对来说要好得多,先介绍点理论背景,在基于python介绍下算法的实现以及一两个案例。
  • 3 很多人都觉得机器学习需要很好的数学功底,于是学习机器学习前,先捧着高数、线代、概率论看,结果看了两天,觉得枯燥无味,就打算放弃。其实没必要的,结合上面的《机器学习实战》,遇到什么公式,进行相应的复习就行了,这也是为什么把数学放在第三个步骤。其实机器学习里面能理解高数的求导、线代的矩阵以及向量、概率的期望方差等就差不多了,其他有需要的话针对学习就行。
  • 4 学习机器学习肯定是要看吴恩达老师的公开课了,公开课的地址,我刚看了两集,感觉还是非常不错的。
  • 5 学习Spark MLLib相关的算法实现,如果有时间的话,可以看看源码。

通过上面的学习,暂时可以到达第二个层次了。我想一般搞计算机的,应该很少有能对各种算法推导融会贯通的。所以第三种境界,就留给其他人吧....

推荐资源

1 《机器学习实战》

  • 推荐指数:★★★★★
  • 推荐理由: 理论、算法都有,比较好懂

2 机器学习 斯坦福 公开课

  • 推荐指数:★★★★☆
  • 推荐理由:权威大拿带你飞,还有什么理由不上车?

3 《推荐系统实践》

  • 推荐指数:★★★☆☆
  • 推荐理由:如果是想做个性化推荐,那么必须要看看这本书!

4 Spark MLLib官方文档以及example代码样例

  • 推荐指数:★★☆☆☆
  • 推荐理由:官方文档大体上知道有什么内容就行,主要是推荐看看example里面提供的代码,能帮助少走不少弯路。

出处:http://www.cnblogs.com/xing901022/p/6953696.html

时间: 2024-11-10 02:40:31

机器学习--入门答疑的相关文章

机器学习入门资源--汇总

机器学习入门资源--汇总 基本概念 机器学习 机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法.机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法.因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论.算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法. 下面从微观到宏观试着梳理一下机器学习的范畴:

机器学习入门:线性回归及梯度下降

机器学习入门:线性回归及梯度下降 本文会讲到: (1)线性回归的定义 (2)单变量线性回归 (3)cost function:评价线性回归是否拟合训练集的方法 (4)梯度下降:解决线性回归的方法之一 (5)feature scaling:加快梯度下降执行速度的方法 (6)多变量线性回归   Linear Regression 注意一句话:多变量线性回归之前必须要Feature Scaling! 方法:线性回归属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个

机器学习入门——单变量线性回归

线性回归的概念,在高中数学书里就出现过. 给你一些样本点,如何找出一条直线,使得最逼近这些样本点. 给出一个例子:假设 x 是房子面积,y是房子价格,确定一条直线需要theta0和theta1. 给出x,我们就可以计算出房子的价格 h(x) = theta0+theta1*x 关键是如何计算出theta0和theta1,也就是如何找出这么一条直线呢? 在这里,引入一个概念,叫做cost function.m表示样本个数,也就是训练样本数目 这是一个square error,学过统计的应该经常见到

【转载】机器学习入门者学习指南(经验分享)

机器学习入门者学习指南(经验分享) 2013-09-21 14:47 本人计算机研二,专业方向自然语言处理,个人对于机器学习挺感兴趣,于是开始学习.所以,原来这家伙是个菜鸟……正是由于自己是个菜鸟,所以体会到自学机器学习的艰辛,于是在这里分享一下个人的经验,希望能对入门者有所帮助.一些有关机器学习的介绍在这里就不做详细介绍了,感兴趣的同学可以去维基百科.就直接进入正题.1.去Coursera上Andrew Ng的<机器学习>,完成所有作业,最好能全部拿满分.这是相当入门的课程,老师是机器学习领

设计牛人——设计入门答疑番外篇有感

看了老牛(牛MO王)的U1番外篇问答感慨非常多,事实上自己也算不上入门非常久的大师,只是有时间去整理整理自己在网页设计方面的经验分享给大家是一件非常好的事情,尤其是对一些想做设计或者想在设计方面转行的人,我想应该是非常有帮助的,由于常常遇到这样让人无奈的问题:我是新手,有什么好的建议?从什么方面入手?怎么開始?类似这种问题总让人认为非常难回答,要真说的话有非常多非常多要说的,真要学的话,网络资源如此发达,建议小伙伴们自己去网络寻找,如今有非常多好心人在互联网上发表分享文章,假设你真的有心,就自己

机器学习入门 - 1. 介绍与决策树(decision tree)

机器学习(Machine Learning) 介绍与决策树(Decision Tree) 机器学习入门系列 是 个人学习过程中的一些记录与心得.其主要以要点形式呈现,简洁明了. 1.什么是机器学习? 一个比较概括的理解是: 根据现有的数据,预测未来 2.核心思想 : Generalization 可以理解为,归纳.概括.就像是人的学习一样,找出一件事物与与一件事物的联系 3.归纳性的机器学习(Inductive machine learning) 其核心思想是使用训练数据,并从其中摸索出一套适用

老司机学python篇:第一季(基础速过、机器学习入门)

详情请交流  QQ  709639943 00.老司机学python篇:第一季(基础速过.机器学习入门) 00.Python 从入门到精通 78节.2000多分钟.36小时的高质量.精品.1080P高清视频教程!包括标准库.socket网络编程.多线程.多进程和协程. 00.Django实战之用户认证系统 00.Django实战之企业级博客 00.深入浅出Netty源码剖析 00.NIO+Netty5各种RPC架构实战演练 00.JMeter 深入进阶性能测试体系 各领域企业实战 00.30天搞

机器学习入门-文本特征-word2vec词向量模型 1.word2vec(进行word2vec映射编码)2.model.wv[&#39;sky&#39;]输出这个词的向量映射 3.model.wv.index2vec(输出经过映射的词名称)

函数说明: 1. from gensim.model import word2vec  构建模型 word2vec(corpus_token, size=feature_size, min_count=min_count, window=window, sample=sample) 参数说明:corpus_token已经进行切分的列表数据,数据格式是list of list , size表示的是特征向量的维度,即映射的维度, min_count表示最小的计数词,如果小于这个数的词,将不进行统计,

web安全之机器学习入门——3.1 KNN/k近邻算法

目录 sklearn.neighbors.NearestNeighbors 参数/方法 基础用法 用于监督学习 检测异常操作(一) 检测异常操作(二) 检测rootkit 检测webshell sklearn.neighbors.NearestNeighbors 参数: 方法: 基础用法 print(__doc__) from sklearn.neighbors import NearestNeighbors import numpy as np X = np.array([[-1, -1],