[cocos2d-x]深入--几个代表性的类 (续)

摘要: 此文对cocos2d-x引擎中最具代表性,最能体现框架结构的几个类做了简单的介绍, 包括Director,Application, Renderer, EventDispatcher, Scheduler. 对于这些类, 也只对关系主要流程的方法做了介绍, 略过了容错代码和其它细节. 主要目的是让大家快速的对cocos2d-x引擎有一个全面笼统的认识, 也方便快速定位问题.



  • EventDispatcher

    • EventDispatcher,EventListener,Event之间的关系
    • Event
    • EventListener
    • 存放 EventListener 的地方
    • EventListener的fixedPriority
      • EventListener的遍历顺序
      • Event在什么条件下会被优先级更高的EventListener截获?
    • 核心函数: EventDispatcher::dispatchEvent()
    • 总结

EventDispatcher

EventDispatcher,EventListener,Event之间的关系

  • EventDispatcher: 事件分发器, 相当于所有事件的中控中心. 管理着EventListener,当一个Event到来的时候决定CallBack的调用顺序。
  • Event ( EventTouch, EventKeyboard 等), 具体的事件数据,
  • EventListener ( EventListenerTouch, EventListenerKeyboard 等 ): 建立了EventCallBack的映射关系, EventDispatcher 根据这种映射关系调用对应的 CallBack.

Event

Event有以下几种类型:

    enum class Type
    {
        TOUCH,
        KEYBOARD,
        ACCELERATION,
        MOUSE,
        FOCUS,
        CUSTOM
    };

Event最重要的属性就是type, 标识了它是那种类型的事件, 也决定了由哪个EventListner来处理它.

EventListener

EventListner有以下几种类型:

    enum class Type
    {
        UNKNOWN,
        TOUCH_ONE_BY_ONE,
        TOUCH_ALL_AT_ONCE,
        KEYBOARD,
        MOUSE,
        ACCELERATION,
        FOCUS,
        CUSTOM
    };

除了UNKNOWN, 跟Event::Type相比,Event::Type::TOUCH同时被两种类型的EventListener处理: TOUCH_ONE_BY_ONETOUCH_ALL_AT_ONCE. 这两种EventListener分别处理单点触摸事件和多点触摸事件. 多说几句: 假如一个TouchEvent事件中有多个触摸点, 那么类型为 EventListener::Type::TOUCH_ONE_BY_ONEEventListener 会把这个事件分解成若干个单点触摸事件来处理. 而类型为 EventListener::Type::TOUCH_ALL_AT_ONCEEventListener 就是来处理多点触摸的, 会一次处理它.

其它几种类型都是一一对应的, 即一种Event::TypeEvent会被对应类型的EventListener接受.

存放 EventListener 的地方

EventDispatcher中, 它把以上7种 EventListener::Type 类型的 EventListner 放到7个队列中. 也就是在这样一个字段中:

std::unordered_map<EventListener::ListenerID, EventListenerVector*> _listenerMap;
  • EventListener::ListenerID : 每一种EventListener::Type有唯一的 EventListener::ListenerID. 其实通过这段代码 typedef std::string ListenerID; 可知: EventListener::ListenerID 就是简单 string, 就是一个名称而已.
  • EventListenerVector: 顾名思义, 就是一个 EventListener 的向量容器. 相对于普通的向量容器, 它增加了priority管理功能.

EventListener的fixedPriority

简单来说, 每个 EventListener 有自己的 fixedPriority 属性, 它是一个整数.

EventListener的遍历顺序

EventDispatcher 在抛发事件的时候, 会先处理 Event 的时候, 会优先遍历 fixedPriority 低的 EventListener, 调用它的 CallBack. 在某些条件下, 一个 Event 被一个 EventListener 处理之后, 会停止遍历其它的 EventListener. 反映到实战中就是: 你监听了某种事件, 这种事件也出发了, 但是对应的回调函数并没有被调用, 也就是被优先级更高的 EventListener 截获了.

如果 fixedPriority 一样呢? 按照什么顺序?

  1. fixedPriority 为0, 这个值是专门为 Scene Object 预留的. 即, 默认情况下, 绝大多数继承自 Node 的对象添加的普通事件监听器, 其 fixedPriority 都为0. 此时, NodeglobalZOrder决定了优先级, 值越大, 越先被遍历到, 即在显示层中层级越高, 越先接受事件. 这在ui响应逻辑中也是合理的.
  2. fixedPriority 不为0, 那就按添加顺序.

Event在什么条件下会被优先级更高的EventListener截获?

  1. 对于 EventListenerTouchOneByOne, 它有一个字段: _needSwallow, 当它为 true 的时候, 如果它接受了某个 Event, 优先级更低的 EventListener 就接受不到了. 可以用 EventListenerTouchOneByOne::setSwallowTouches(bool needSwallow) 来改变它.
  2. 对于其它类型的 EventLIstener, 只有在显示调用了 Event::stopPropagation() 的时候, 才会中断遍历.

核心函数: EventDispatcher::dispatchEvent()

下面我们看看EventDispatcher最核心的函数:

void EventDispatcher::dispatchEvent(Event* event): 当有响应的事件到来的时候, 都会调用这个函数来通知监听了此事件的对象.

其实, 上面的介绍, 已经把这个函数里绝大部分逻辑都描述了,这里做一个最后的总结

事件抛发的简要流程如下:

  1. 检查 _listenerMap 中所有的EventListnerVector, 如果哪个容器的 EventListener 优先级顺序需要更新, 则重新排序
  2. 对于类型为 Event::Type::TOUCH 的事件, 则按照EventListener的遍历顺序遍历所有的 EventListener. 只有接受了 EventTouch::EventCode::BEGAN 事件的 EventListener, 才会收到其他类型的 EventTouch 事件.
  3. 对于其他类型的事件, 也按照EventListener的遍历顺序的顺序遍历对应的EventListener.

总结

Eventdispatcher 中的其它函数, 主要功能都是 添加EventListener, 删除EventListener等, 不做详细介绍.

总的来说, Eventdispatcher 是一个中转器:

  1. 事件的产生模块儿, 只关心自己构造正确的 Event, 调用 EventDispatcher::dispatchEvent(Event* event) 交给 EventDispatcher.
  2. 需要监听事件的模块儿, 只需调用 EventDispatcher::addEventListener(EventListener* listener) (或者它的其它变种)来注册自己作为监听者.
  3. EventDispatcher 的作用是:
    1. 把特定类型的 Event 送给对应类型的 EventListener.
    2. 对于同一种 Event, 规定了事件送达的优先级.

Written with StackEdit.

[cocos2d-x]深入--几个代表性的类 (续)

时间: 2024-10-18 10:02:18

[cocos2d-x]深入--几个代表性的类 (续)的相关文章

[cocos2d-x]深入--几个代表性的类

摘要: 此文对cocos2d-x引擎中最具代表性,最能体现框架结构的几个类做了简单的介绍, 包括Director,Application, Renderer, EventDispatcher, Scheduler. 对于这些类, 也只对关系主要流程的方法做了介绍, 略过了容错代码和其它细节. 主要目的是让大家快速的对cocos2d-x引擎有一个全面笼统的认识, 也方便快速定位问题. 博客: http://www.cnblogs.com/jhzhu 邮箱: [email protected] 作者

C++ Primer 学习笔记_66_面向对象编程 --定义基类和派生类[续]

算法旨在用尽可能简单的思路解决问题,理解算法也应该是一个越看越简单的过程,当你看到算法里的一串概念,或者一大坨代码,第一感觉是复杂,此时不妨从例子入手,通过一个简单的例子,并编程实现,这个过程其实就可以理解清楚算法里的最重要的思想,之后扩展,对算法的引理或者更复杂的情况,对算法进行改进.最后,再考虑时间和空间复杂度的问题. 了解这个算法是源于在Network Alignment问题中,图论算法用得比较多,而对于alignment,特别是pairwise alignment, 又经常遇到maxim

如何用boost::serialization去序列化派生模板类(续)

在 如何用boost::serialization去序列化派生模板类这篇文章中,介绍了序列化派生类模板类, 在写測试用例时一直出现编译错误,调了非常久也没跳出来,今天偶然试了一下...竟然调了出来. 先看看变异错误的代码(...看不出有错,但是编译就有错). 基类代码: class base_class { public: base_class(int m=0) : base_member_(0) {} virtual ~base_class() {} virtual void print_da

C++ Primer 学习笔记_66_面向对象编程 -定义基类跟派生类[续]

面向对象编程 --定义基类和派生类[续] 四.virtual与其他成员函数 C++中的函数调用默认不使用动态绑定.要触发动态绑定,必须满足两个条件: 1)只有指定为虚函数的成员函数才能进行动态绑定,成员函数默认为非虚函数,非虚函数不进行动态绑定. 2)必须通过基类类型的引用或指针进行函数调用. 1.从派生类到基类的转换 因为每个派生类对象都包含基类部分,所以可以将基类类型的引用绑定到派生类对象的基类部分可以用指向基类的指针指向派生类对象: void print_total(const Item_

怎样用boost::serialization去序列化派生模板类(续)

在 怎样用boost::serialization去序列化派生模板类这篇文章中,介绍了序列化派生类模板类, 在写测试用例时一直出现编译错误,调了很久也没跳出来,今天偶然试了一下...居然调了出来. 先看看变异错误的代码(...看不出有错,可是编译就有错). 基类代码: class base_class { public: base_class(int m=0) : base_member_(0) {} virtual ~base_class() {} virtual void print_dat

Cocos2d 3.0继承自Sprite的类在addChild后出现故障

当继承自Sprite的类被addChild到其它的Node里后出现例如以下图问题,说明没有调用父类Sprite::init()的方法,由于父类Sprite里的_textureAtlas须要初始化为null,在继承自Sprite的子类里的构造函数或init方法里加入Sprite::init()就能够了.

[cocos2dx笔记013]一个使用CCRenderTexture创建动态纹理显示数字的类

用CCLabelTTF显示的数字不好看.于是就想到用图片来代理.眼下网上的实现都是把每一个数字做一个CCSprite组合的方式. 可是我想.动态生成纹理的方式.没有就仅仅好自己手动写一个. 头文件 #ifndef _X_NUMBER_H_ #define _X_NUMBER_H_ #include <cocos2d.h> #include <xtype.h> namespace cocos2d { //基于图片显示的数字 /* 这个类不是用一个一个数字拼起来,而是渲染成一个独立的纹

实现单例类

单例类主要是为了防止重复的定义类实例,这样在整个程序中就只有一个类实例,cocos2d就是采用的单例模式 为了保证类实例只能产生一个,那么类构造函数就必须写成私有的,这样,在类外就不能调用构造函数构造新实例 第一种方式: //静态方法也是保证单例的条件之一 1 class Temp 2 { 3 private: 4 Temp(){} 5 private: 6 static Temp instance; 7 public: 8 static Temp getInstance() 9 { 10 re

darwin Stream Server源码分析

摘要 ?所谓的流式媒体简单的讲就是指人们通过网络实时的收看多媒体信息:如音频流.视频流等.与流式媒体对应的传统工作方式是下载+播放模式,即用户首先下载多媒体文件,然后再在本地播放,这种方法的一个主要缺点是启动延迟较大,例如一个30分钟长的MPEG-I文件(相当于VCD质量),即使使用1.5Mbps的速率下载,也需要半个小时才能完成,这样一个漫长的等待时间实在是无法忍受.在窄带网络环境中,几乎所有基于Internet的流式媒体产品都有着类似的工作原理:首先需要开发高效的压缩编码技术,并通过一套完整