第一种方法是利用DP,时间复杂度是 O(m * m * n)
dp(i,j):矩阵中同一行以(i,j)结尾的全部为1的最长子串长度
代码如下:
int maximalRectangle(vector<vector<char> > &matrix) { int m = matrix.size(); if (m == 0) return 0; int n = matrix[0].size(); if (n == 0) return 0; vector<vector<int>> dp(m, vector<int>(n)); int maxArea = 0; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (matrix[i][j] == '0') continue; dp[i][j] = (j == 0 ? 1 : dp[i][j - 1] + 1); int minX = dp[i][j]; for (int k = 1; k <= i + 1; k++) { minX = min(minX, dp[i - k + 1][j]); maxArea = max(maxArea, minX * k); } } } return maxArea; }
第二种方法:
来自https://oj.leetcode.com/discuss/5198/a-o-n-2-solution-based-on-largest-rectangle-in-histogram
其实这里和 Largest Rectangle in Histogram是类似的,
之前的dp(i,j)保存以第i行,第j列结尾的,同一行中连续1的个数;那么这里我们用一个数组x,使x[j]保存当前行第j列中的连续1的个数。之后按行遍历,每一行都按Largest Rectangle in Histogram的算法处理一遍
代码如下:复杂度为O(m*n)
int maximalRectangle(vector<vector<char> > &matrix) { int m = matrix.size(); if (m == 0) return 0; int n = matrix[0].size(); if (n == 0) return 0; vector<int> height(n); int maxArea = 0; for (int i = 0; i < m; i++) { vector<int> index; for (int j = 0; j < n; j++) { if (matrix[i][j] == '0') height[j] = 0; else height[j] ++; while (index.size() && height[j] <= height[index.back()]) maxArea = max(getArea(height, index, j), maxArea); index.push_back(j); } while (index.size()) maxArea = max(getArea(height, index, height.size()), maxArea); } return maxArea; } int getArea(vector<int> &height, vector<int>& index, int start) { int areaH = height[index.back()]; index.pop_back(); int end = index.empty() ? -1 : index.back(); return (start - end - 1) * areaH; }
第三种方法:
利用极值http://hi.baidu.com/mzry1992/item/030f9740e0475ef7dc0f6cba
H[i][j] = 0 matrix[i][j] = ‘0‘
H[i-1][j] + 1 matrix[i][j] = ‘1‘
L[i][j] = max{L[i-1][j], 第i行左边第一个‘0‘的位置+1}
R[i][j] = min{R[i-1][j], 第i行右边第一个‘0‘的位置-1}
maxArea = max{maxArea, H[i][j] * (R[i][j] - L[i][j] + 1)}
由于H,L,R均只用到i-1,j的内容,可以将空间进一步压缩成为O(N)的
代码如下:
int maximalRectangle(vector<vector<char> > &matrix) { int m = matrix.size(); if (m == 0) return 0; int n = matrix[0].size(); if (n == 0) return 0; vector<int> h(n); vector<int> l(n); vector<int> r(n, n - 1); int maxArea = 0, maxL = 0, minR = m - 1; for (int i = 0; i < m; i++) { maxL = 0, minR = n-1; for (int j = 0; j < n; j++) { if (matrix[i][j] == '0') { h[j] = 0; l[j] = 0; r[j] = n - 1; maxL = j + 1; } else { h[j]++; l[j] = max(l[j], maxL); } } for (int j = n - 1; j >= 0; j--) { if (matrix[i][j] == '0') { r[j] = n - 1; minR = j - 1; } else { r[j] = min(r[j], minR); maxArea = max(maxArea, h[j] * (r[j] - l[j] + 1)); } } } return maxArea; }
时间: 2024-10-10 21:47:42