Android Initializing a Build Environment

from://https://source.android.com/source/initializing.html#next-download-the-source

Initializing a Build Environment

IN THIS DOCUMENT

  1. Choosing a Branch
  2. Setting up a Linux build environment
    1. Installing the JDK
    2. Installing required packages (Ubuntu 12.04)
    3. Installing required packages (Ubuntu 14.04)
    4. Installing required packages (Ubuntu 10.04 -- 11.10)
    5. Configuring USB Access
    6. Setting up ccache
    7. Using a separate output directory
  3. Setting up a Mac OS build environment
    1. Creating a case-sensitive disk image
    2. Installing the JDK
    3. Master branch
    4. Branch 5.0.x and earlier branches
    5. Branch 4.4.x and earlier branches
    6. Branch 4.0.x and all earlier branches
  4. Next: Download the source

This section describes how to set up your local work environment to build the Android source files. You will need to use Linux or Mac OS. Building under Windows is not currently supported.

For an overview of the entire code-review and code-update process, see Life of a Patch.

Choosing a Branch



Some of the requirements for your build environment are determined by which version of the source code you plan to compile. See Build Numbers for a full listing of branches you may choose from. You may also choose to download and build the latest source code (called "master"), in which case you will simply omit the branch specification when you initialize the repository.

Once you have selected a branch, follow the appropriate instructions below to set up your build environment.

Setting up a Linux build environment



These instructions apply to all branches, including master.

The Android build is routinely tested in house on recent versions of Ubuntu LTS (12.04), but most distributions should have the required build tools available. Reports of successes or failures on other distributions are welcome.

For Gingerbread (2.3.x) and newer versions, including the master branch, a 64-bit environment is required. Older versions can be compiled on 32-bit systems.

Note: See the Downloading and Building page for the list of hardware and software requirements. Then follow the detailed instructions for Ubuntu and Mac OS below.

Installing the JDK

The master branch of Android in the Android Open Source Project (AOSP) requires Java 7. On Ubuntu, use OpenJDK.

Java 7: For the latest version of Android

$ sudo apt-get update$ sudo apt-get install openjdk-7-jdk

Optionally, update the default Java version by running:

$ sudo update-alternatives --config java$ sudo update-alternatives --config javac

If you encounter version errors for Java, set its path as described in the Wrong Java Versionsection.

To develop older versions of Android, download and install the corresponding version of the Java JDK:
Java 6: for Gingerbread through KitKat
Java 5: for Cupcake through Froyo

Note: The lunch command in the build step will ensure that the Sun JDK is used instead of any previously installed JDK.

Installing required packages (Ubuntu 12.04)

You will need a 64-bit version of Ubuntu. Ubuntu 12.04 is recommended. Building using an older version of Ubuntu is not supported on master or recent releases.

$ sudo apt-get install git gnupg flex bison gperf build-essential \  zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev \  libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386 \  libgl1-mesa-dev g++-multilib mingw32 tofrodos \  python-markdown libxml2-utils xsltproc zlib1g-dev:i386$ sudo ln -s /usr/lib/i386-linux-gnu/mesa/libGL.so.1 /usr/lib/i386-linux-gnu/libGL.so

Installing required packages (Ubuntu 14.04)

Building on Ubuntu 14.04 is experimental at the moment but will eventually become the recommended environment.

$ sudo apt-get install bison g++-multilib git gperf libxml2-utils

Installing required packages (Ubuntu 10.04 -- 11.10)

Building on Ubuntu 10.04-11.10 is no longer supported, but may be useful for building older releases of AOSP.

$ sudo apt-get install git-core gnupg flex bison gperf build-essential \  zip curl zlib1g-dev libc6-dev lib32ncurses5-dev ia32-libs \  x11proto-core-dev libx11-dev lib32readline5-dev lib32z-dev \  libgl1-mesa-dev g++-multilib mingw32 tofrodos python-markdown \  libxml2-utils xsltproc

On Ubuntu 10.10:

$ sudo ln -s /usr/lib32/mesa/libGL.so.1 /usr/lib32/mesa/libGL.so

On Ubuntu 11.10:

$ sudo apt-get install libx11-dev:i386

Configuring USB Access

Under GNU/linux systems (and specifically under Ubuntu systems), regular users can‘t directly access USB devices by default. The system needs to be configured to allow such access.

The recommended approach is to create a file /etc/udev/rules.d/51-android.rules (as the root user) and to copy the following lines in it. <username> must be replaced by the actual username of the user who is authorized to access the phones over USB.

# adb protocol on passion (Nexus One)SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4e12", MODE="0600", OWNER="<username>"# fastboot protocol on passion (Nexus One)SUBSYSTEM=="usb", ATTR{idVendor}=="0bb4", ATTR{idProduct}=="0fff", MODE="0600", OWNER="<username>"# adb protocol on crespo/crespo4g (Nexus S)SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4e22", MODE="0600", OWNER="<username>"# fastboot protocol on crespo/crespo4g (Nexus S)SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4e20", MODE="0600", OWNER="<username>"# adb protocol on stingray/wingray (Xoom)SUBSYSTEM=="usb", ATTR{idVendor}=="22b8", ATTR{idProduct}=="70a9", MODE="0600", OWNER="<username>"# fastboot protocol on stingray/wingray (Xoom)SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="708c", MODE="0600", OWNER="<username>"# adb protocol on maguro/toro (Galaxy Nexus)SUBSYSTEM=="usb", ATTR{idVendor}=="04e8", ATTR{idProduct}=="6860", MODE="0600", OWNER="<username>"# fastboot protocol on maguro/toro (Galaxy Nexus)SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4e30", MODE="0600", OWNER="<username>"# adb protocol on panda (PandaBoard)SUBSYSTEM=="usb", ATTR{idVendor}=="0451", ATTR{idProduct}=="d101", MODE="0600", OWNER="<username>"# adb protocol on panda (PandaBoard ES)SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="d002", MODE="0600", OWNER="<username>"# fastboot protocol on panda (PandaBoard)SUBSYSTEM=="usb", ATTR{idVendor}=="0451", ATTR{idProduct}=="d022", MODE="0600", OWNER="<username>"# usbboot protocol on panda (PandaBoard)SUBSYSTEM=="usb", ATTR{idVendor}=="0451", ATTR{idProduct}=="d00f", MODE="0600", OWNER="<username>"# usbboot protocol on panda (PandaBoard ES)SUBSYSTEM=="usb", ATTR{idVendor}=="0451", ATTR{idProduct}=="d010", MODE="0600", OWNER="<username>"# adb protocol on grouper/tilapia (Nexus 7)SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4e42", MODE="0600", OWNER="<username>"# fastboot protocol on grouper/tilapia (Nexus 7)SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4e40", MODE="0600", OWNER="<username>"# adb protocol on manta (Nexus 10)SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4ee2", MODE="0600", OWNER="<username>"# fastboot protocol on manta (Nexus 10)SUBSYSTEM=="usb", ATTR{idVendor}=="18d1", ATTR{idProduct}=="4ee0", MODE="0600", OWNER="<username>"

Those new rules take effect the next time a device is plugged in. It might therefore be necessary to unplug the device and plug it back into the computer.

This is known to work on both Ubuntu Hardy Heron (8.04.x LTS) and Lucid Lynx (10.04.x LTS). Other versions of Ubuntu or other variants of GNU/linux might require different configurations.

Setting up ccache

You can optionally tell the build to use the ccache compilation tool. Ccache acts as a compiler cache that can be used to speed-up rebuilds. This works very well if you do "make clean" often, or if you frequently switch between different build products.

Put the following in your .bashrc or equivalent.

export USE_CCACHE=1

By default the cache will be stored in ~/.ccache. If your home directory is on NFS or some other non-local filesystem, you will want to specify the directory in your .bashrc as well.

export CCACHE_DIR=<path-to-your-cache-directory>

The suggested cache size is 50-100GB. You will need to run the following command once you have downloaded the source code:

prebuilts/misc/linux-x86/ccache/ccache -M 50G

When building Ice Cream Sandwich (4.0.x) or older, ccache is in a different location:

prebuilt/linux-x86/ccache/ccache -M 50G

This setting is stored in the CCACHE_DIR and is persistent.

Using a separate output directory

By default, the output of each build is stored in the out/ subdirectory of the matching source tree.

On some machines with multiple storage devices, builds are faster when storing the source files and the output on separate volumes. For additional performance, the output can be stored on a filesystem optimized for speed instead of crash robustness, since all files can be re-generated in case of filesystem corruption.

To set this up, export the OUT_DIR_COMMON_BASE variable to point to the location where your output directories will be stored.

export OUT_DIR_COMMON_BASE=<path-to-your-out-directory>

The output directory for each separate source tree will be named after the directory holding the source tree.

For instance, if you have source trees as /source/master1 and /source/master2 and OUT_DIR_COMMON_BASEis set to /output, the output directories will be /output/master1 and /output/master2.

It‘s important in that case to not have multiple source trees stored in directories that have the same name, as those would end up sharing an output directory, with unpredictable results.

This is only supported on Jelly Bean (4.1) and newer, including the master branch.

Setting up a Mac OS build environment



In a default installation, Mac OS runs on a case-preserving but case-insensitive filesystem. This type of filesystem is not supported by git and will cause some git commands (such as "git status") to behave abnormally. Because of this, we recommend that you always work with the AOSP source files on a case-sensitive filesystem. This can be done fairly easily using a disk image, discussed below.

Once the proper filesystem is available, building the master branch in a modern Mac OS environment is very straightforward. Earlier branches, including ICS, require some additional tools and SDKs.

Creating a case-sensitive disk image

You can create a case-sensitive filesystem within your existing Mac OS environment using a disk image. To create the image, launch Disk Utility and select "New Image". A size of 25GB is the minimum to complete the build, larger numbers are more future-proof. Using sparse images saves space while allowing to grow later as the need arises. Be sure to select "case sensitive, journaled" as the volume format.

You can also create it from a shell with the following command:

# hdiutil create -type SPARSE -fs ‘Case-sensitive Journaled HFS+‘ -size 40g ~/android.dmg

This will create a .dmg (or possibly a .dmg.sparsefile) file which, once mounted, acts as a drive with the required formatting for Android development. For a disk image named "android.dmg" stored in your home directory, you can add the following to your ~/.bash_profile to mount the image when you execute "mountAndroid":

# mount the android file imagefunction mountAndroid { hdiutil attach ~/android.dmg -mountpoint /Volumes/android; }

Once mounted, you‘ll do all your work in the "android" volume. You can eject it (unmount it) just like you would with an external drive.

Installing the JDK

The master and 5.0.x branches of Android in the Android Open Source Project (AOSP) require Java 7. On Mac OS, use jdk-7u71-macosx-x64.dmg.

To develop for versions of Android Gingerbread through KitKat, download and install the Java 6 version of the Java JDK.

Master branch

To build the latest source in a Mac OS environment, you will need an Intel/x86 machine running MacOS 10.8 (Mountain Lion) or later, along with Xcode 4.5.2 or later including the Command Line Tools.

Branch 5.0.x and earlier branches

To build 5.0.x and earlier source in a Mac OS environment, you will need an Intel/x86 machine running MacOS 10.8 (Mountain Lion), along with Xcode 4.5.2 and Command Line Tools.

Branch 4.4.x and earlier branches

To build 4.2.x and earlier source in a Mac OS environment, you will need an Intel/x86 machine running MacOS 10.6 (Snow Leopard) or MacOS 10.7 (Lion), along with Xcode 4.2 (Apple‘s Developer Tools). Although Lion does not come with a JDK, it should install automatically when you attempt to build the source.

The remaining sections for Mac OS apply only to those who wish to build earlier branches.

Branch 4.0.x and all earlier branches

To build android-4.0.x and earlier branches in a Mac OS environment, you need an Intel/x86 machine running MacOS 10.5 (Leopard) or MacOS 10.6 (Snow Leopard). You will need the MacOS 10.5 SDK.

Installing required packages

  • Install Xcode from the Apple developer site. We recommend version 3.1.4 or newer, i.e. gcc 4.2. Version 4.x could cause difficulties. If you are not already registered as an Apple developer, you will have to create an Apple ID in order to download.
  • Install MacPorts from macports.org.

    Note: Make sure that /opt/local/bin appears in your path BEFORE /usr/bin. If not, add

    export PATH=/opt/local/bin:$PATH

    to your ~/.bash_profile.

  • Get make, git, and GPG packages from MacPorts:
    $ POSIXLY_CORRECT=1 sudo port install gmake libsdl git-core gnupg

    If using Mac OS 10.4, also install bison:

    $ POSIXLY_CORRECT=1 sudo port install bison

Reverting from make 3.82

For versions of Android before ICS, there is a bug in gmake 3.82 that prevents android from building. You can install version 3.81 using MacPorts by taking the following steps:

  • Edit /opt/local/etc/macports/sources.conf and add a line that says

    file:///Users/Shared/dports

    above the rsync line. Then create this directory:

    $ mkdir /Users/Shared/dports
  • In the new dports directory, run
    $ svn co --revision 50980 http://svn.macports.org/repository/macports/trunk/dports/devel/gmake/ devel/gmake/
  • Create a port index for your new local repository:
    $ portindex /Users/Shared/dports
  • Finally, install the old version of gmake with
    $ sudo port install gmake @3.81

Setting a file descriptor limit

On MacOS the default limit on the number of simultaneous file descriptors open is too low and a highly parallel build process may exceed this limit.

To increase the cap, add the following lines to your ~/.bash_profile:

# set the number of open files to be 1024ulimit -S -n 1024

Next: Download the source

时间: 2024-11-03 10:55:12

Android Initializing a Build Environment的相关文章

google官方提供的编译android源码的环境初始化,Initializing a Build Environment

原文网址:http://source.android.com/source/initializing.html Initializing a Build Environment IN THIS DOCUMENT Choosing a Branch Setting up a Linux build environment Installing the JDK Installing required packages (Ubuntu 14.04) Installing required packag

提高Android Studio的Build速度实践

1.在下面的目录创建gradle.properties文件 /home/<username>/.gradle/ (Linux) /Users/<username>/.gradle/ (Mac) C:\Users\<username>\.gradle (Windows) 在文件夹中添加 # Project-wide Gradle settings. # IDE (e.g. Android Studio) users: # Settings specified in thi

unity导出android遇到的build target 错误详解

1. 导出运行后显示build target ="9",version is wrong ,can't  loaded xxx.untiy3d files 之类的,一般情况看导出的jar包内的project.properties中target 是否正确,改正后而且要clean相关项目. 2.看AndroidManifest.xml下    android:minSdkVersion和android:targetSdkVersion 是否正确,改正后refresh 3.看报错信息是否提示

Android—SDCard数据存取&amp;Environment简介

1:Environment简介: Environment是android.os包下的一个类,谷歌官方文旦的解释为:Provides access to environment variables(提供访问环境的变量),由此可看出,该类是用于程序访问SDCard的一个设备访问类 Environment 常量 构造方法 方法如下: 解析:比如字段:DIRECTORY_PICTURES 是返回SDcard中Pictures目录的名字 其中的SDCardPicturesName==“Pictures”:

【转】Android属性之build.prop,及property_get/property_set

简要分析一下build.prop是如何生成的.Android的build.prop文件是在Android编译时收集的各种property(LCD density/语言/编译时间, etc.),编译完成之后,文件生成在out/target/product/<board>/system/目录下.在Android运行时可以通过property_get()[c/c++域] / SystemProperties_get*()[Java域]读取这些属性值. (1)build.prop的生成是由make系统

Unity中加入Android项目的Build步骤

简介: 有的项目需要在Android中加入Unity功能,例如ANDROID应用中嵌入Unity3D视图(展示3D模型) 有的项目需要在Unity中加入Android功能,例如3D语音天气球(源码分享)——创建可旋转的3D球 由于Android中的功能和代码只能当作一个Unity插件,需要在Unity进行最终的Build后生成apk文件运行. 所以无论上面两种情况都涉及了在Unity中加入Android项目的Build步骤: 步骤: 1.确保Android工程代码正确,然后在Eclipse中bu

Setting up a EDK II build environment on Windows and Linux:搭建Windows和Linux开发环境[2.2]

Setting up a EDK II build environment on Windows and Linux:搭建Windows和Linux开发环境[2.2] 2015-07   北京海淀区  张俊浩 2. Setting Up EDKII Development Environment(EDKII开发环境的搭建) ->2.1The General Procedure Of Setting Up EDKII Development Environment(搭建EDKII项目的通用流程)

The module is an Android project without build variants, and cannot be built

导入 安卓项目报错 Error:The module 'app' is an Android project without build variants, and cannot be built. Please fix the module's configuration in the build.gradle file and sync the project again. 看不出来什么鬼问题? 百度一下 https://stackoverflow.com/questions/4983496

Setting up a Mac OS build environment

In a default installation, Mac OS runs on a case-preserving but case-insensitive filesystem. This type of filesystem is not supported by git and will cause some git commands (such as git status) to behave abnormally. Because of this, we recommend tha