【转】基于LDA的Topic Model变形

转载自wentingtu

基于LDA的Topic Model变形最近几年来,随着LDA的产生和发展,涌现出了一批搞Topic Model的牛人。我主要关注了下面这位大牛和他的学生:
David M. BleiLDA的创始者,04年博士毕业。一篇关于Topic Model的博士论文充分体现其精深的数学概率功底;而其自己实现的LDA又可体现其不俗的编程能力。说人无用,有论文为证:

  • J. Chang and D. Blei. Relational Topic Models for Document NetworksArtificial Intelligence and Statistics, 2009. [PDF]

基本LDA模型,当然假设文档之间是可交换的,那么在原始的LDA中文档之间其实是认为条件独立的。而在实际情况中,往往不是这个样子的,文档间也许会存 在“social network”的这样的网络性质。如何结合内容和“social network”这两个特征也许是一个非常有意思的话题。这篇论文就是给出了一个解决方法。它为两个文档之间增加了一个二元随机变量,根据其内容特征,来 刻画这种隐含的链接关系。

关于显示的链接关系是过去今年内,人们追逐研究的对象,进而产生PageRank、HITS等等一大批优秀的链接关系算法。那么如何利用隐含的链接呢?什 么是隐含的链接呢?一个最简单的隐含链接就是基于内容相似度构建的图。这个被人们用的不亦乐乎,比如在文摘中的LexRank等。O Kurland在SIGIR中发了两篇大概都是类似的文章,本质思想貌似就是在利用内容之间的“超链接”。
       另外一个比较新颖的研究点,就是如何基于“social network”来挖掘内容特征? Mei Qiaozhu的一篇论文就是利用“social network”的网络结构特征最为规则化因子,重新修正了原始的PLSA模型。想法非常的新颖。

  • D. Blei and J. Lafferty. Topic Models. In A. Srivastava and M. Sahami, editors, Text Mining: Theory and Applications. Taylor and Francis, in press. [PDF]

这篇论文是一篇综述性的大制作的论文,Blei在里面深入浅出的介绍了什么是Topic Model以及他早期的一些Topic Model的变形。值得大家去阅读。

  • J. Boyd-Graber and D. Blei. Syntactic Topic ModelsNeural Information Processing Systems, 2009. [PDF] [Supplement]

原始的LDA考察两个词只是基于共现的角度。而实际情况中,这种共现往往是不能够精确地刻画一些句子结构信息或者说词义信息。如何把这种信息引入。考虑 更深层的生成模型是目前一个热点。这篇论文着眼于一个句子的句法分析的生成过程,它认为每个句子的生成都是基于“parse tree”的,整个概率生成过程完全附着在“parse tree”上了。并且每个句子内,不同的词都有可能去选择更适合自己的Topic。

  • D. Blei, J. McAuliffe. Supervised topic models. In Advances in Neural Information Processing Systems 21, 2007. [PDF] [digg data]

现如今,网络数据除了纯内容外,往往还有其他一写辅助信息,如用户对于某博文的评价或者说用户对于某商品的评价。一个最典型的例子,就是说在当当买书 后,你可以给该书的质量进行打分:5星代表最好,4星代表比较好,。。。依次类推。那么如何把这些信息加入原始的LDA中呢? Blei为其引入了一个response变量因子,该因子条件依赖于该文档的topic distribution。

如何把ratable information和内容有机地结合起来也是最近的一个研究热点。大多数方法还都是,建立一个ratable response variable,然后该变量条件依赖于内容或者说Topic信息。

  • J. Boyd-Graber, D. Blei, and X. Zhu. A topic model for word sense disambiguation. In Empirical Methods in Natural Language Processing, 2007. [PDF]

这篇论文对应的一个大背景是把Topic Model应用到自然语言处理中,具体内容我没太看,主要是结合了WordNet的结构特征,在此基础上产生的图模型。
    此外的一些工作还有把Topic Model用来文摘和词性标注中的。应用到这些问题的两个主要思路:第一个就是用Topic Model去学习出一些compact features,然后在次基础上利用分类器等机器学习方法;另外一种就是利用原始NLP问题的一些结构信息,比如刚才所说的WordNet中的网络结 构,在这个结构特征中推导出整个图模型的概率生成过程。

  • D. Blei and J. Lafferty. A correlated topic model of Science. Annals of Applied Statistics. 1:1 17–35. [PDF] [shorter version from NIPS 18] [code][browser]

还没有认真看,这个其实打破了原来topic之间的可交换性。

  • D. Blei and J. Lafferty. Dynamic topic models. In Proceedings of the 23rd International Conference on Machine Learning, 2006. [PDF]

也没有仔细看,把Topic Model和时间维度结合了起来。Mei Qiaozhu也有一篇是研究话题内容随着时间变化的论文,但是是基于PLSI和HMM来完成的。

  • T. Griffiths, M. Steyvers, D. Blei, and J. Tenenbaum. Integrating topics and syntax. In Advances in Neural Information Processing Systems 17, 2005. [PDF]

这篇论文是一篇非常优秀的论文,开篇详细地叙述了词的不同功能分类,也叫做HMM-LDA模型。正如每个人存在都有其社会意义,那么词存在对于文本语义 的表述也有着不同的角色。作者把词分为了两大功能:第一个就是semantic功能,也就是之前我们所有的Topic word;另一个功能就是说语法功能,也就是说这些词的存在是为了让整个句子的生成过程看起来更像一个完整体或者说更符合语言规范。T. Griffiths和M. Steyvers是两个很优秀的学者,他们开发了topic model工具包,并且也有一堆的牛论文。

  • D. Blei. Probabilistic Models of Text and Images. PhD thesis, U.C. Berkeley, Division of Computer Science, 2004. [PDF]

Blei的博士论文,我至今还没有看完,因为一直纠结在那个Varitional inference的推导。自己责备一下自己。

  • D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993–1022, January 2003. [A shorter version appeared in NIPS 2002]. [PDF] [code]

LDA的第一篇文章,不算很好读懂。初次阅读时,一般会遇到可交换性、variational inference、simplex等等细节问题。经典中的经典。

  • D. Blei and P. Moreno. Topic segmentation with an aspect hidden Markov model. In Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, pages 343–348. ACM Press, 2001. [PDF]

SIGIR中的一篇关于分段的论文。其实分段这个事情在现实中需求量比较大,但是成熟的工具包并不多,或者我不知道。比较好的成熟的算法一般还是基于语 义斜率的变化来计算的。在次召唤下懂这方面的大牛推荐几个好用的工具。与分段关联很紧密的一个问题就是网页正文抽取,同样也是这个问题,发论文的多,但是 实际release出来代码的很少。比较著名的,如VIPS,但是我没有用过。昨天发现VIPS的作者原来也是一个巨牛的中国人,Deng Cai。之前是清华学生,现在师从Jiawei Han,各种牛会议和牛期刊发了N多的文章。在此膜拜一下。

总结       目前我能看懂的Topic Model的文章还是很少一部分,自己的概率和数学基础太差,对于posterior inference往往无能为力,这也是下一步我的目标。并且自己其实也不太会创新,下一步也是要在这个方面多下功夫,争取应用Topic Model来解决自己的实际问题。

时间: 2024-11-05 11:48:02

【转】基于LDA的Topic Model变形的相关文章

Topic Model的分类和设计原则

Topic Model的分类和设计原则 http://blog.csdn.net/xianlingmao/article/details/7065318 topic model的介绍性文章已经很多,在此仅做粗略介绍,本文假设读者已经较为熟悉Topic Medel. Topic Model (LDA)认为一个离散数据集合(如文档集合,图片集合,为行文方便,本文统统以文档集合作为描述对象,其他的数据集合只需换掉对应的术语即可)是由隐含在数据集合背后的topic set 生成的,这个set中的每一个t

我是这样一步步理解--主题模型(Topic Model)、LDA(案例代码)

1. LDA模型是什么 LDA可以分为以下5个步骤: 一个函数:gamma函数. 四个分布:二项分布.多项分布.beta分布.Dirichlet分布. 一个概念和一个理念:共轭先验和贝叶斯框架. 两个模型:pLSA.LDA. 一个采样:Gibbs采样 关于LDA有两种含义,一种是线性判别分析(Linear Discriminant Analysis),一种是概率主题模型:隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),本文讲后者. 按照wiki上的介绍,L

Topic Model之Probabilistic Latent Semantic Indexing(PLSI/PLSA)

Probabilistic Latent Semantic Indexing(PLSI/PLSA)是常用的话题模型之一,他通过生成模型来模拟文档的产生过程,然后用Maximum likelihood的方法估计模型中未知参数的值,来获取整个生成模型中的参数值,从而构建起整个生成模型. 一. 基本概念 1.  SVD奇异值分解:SVD主要用来求低阶近似问题.当给定一个MXN的矩阵C时(其秩为r),我们希望找到一个近似矩阵C'(其秩不大于k),当k远小于r时,我们称C'为C的低阶近似,设X = C -

knowledge_based topic model - AMC

ABSTRACT摘要 Topic modeling has been widely used to mine topics from documents. However, a key weakness of topic modeling is that it needs a large amount of data (e.g., thousands of doc- uments) to provide reliable statistics to generate coherent topic

Topic Model 实战

Topic Model在考虑语义的情景中被广泛使用,实践证明效果也不错.本文总结了一些Topic Model实战技巧. 利用优质“少量”数据学习模型,缓解单机速度和内存问题,对剩余/新文档做推导(可以数据并行).比如用微博数据训练LDA时,先把长度短的微博过滤掉(有工作得出长度为7的文本已经适合LDA进行学习的结论),剔除相似的微博(转发/分享会造成很多近乎相同的微博).数据量大并且单机环境中可试一下GraphLab Create,还支持采样比较快的alias LDA.如果不仅是为了学习当前文档

topic model

0.基石--贝叶斯推断 计算后验概率即为我们对参数的估计: 其中: ? ??--输入数据 ? ???--待估计的参数 ? ??--似然分布 ? ???--参数的先验分布 ? 对新样本的预测:我们要估计的概率 1.常用的概率分布 Dirichlet Distribution 2.文本建模 2.1 基本模型--unigram model 最基本的一种文本模型. 我们做这样的假设:语料库是从词表中独立的抽取的个.有似然方程 其中是term[t]出现的次数.我们的目标是估计,根据贝叶斯推断的方法,我们需

ASP.NET MVC基于标注特性的Model验证:将ValidationAttribute应用到参数上

原文:ASP.NET MVC基于标注特性的Model验证:将ValidationAttribute应用到参数上 ASP.NET MVC默认采用基于标准特性的Model验证机制,但是只有应用在Model类型及其属性上的ValidationAttribute才有效.如果我们能够将ValidationAttribute特性直接应用到参数上,我们不但可以实现简单类型(比如int.double等)数据的Model验证,还能够实现“一个Model类型,多种验证规则”,本篇文章将为你提供相关的解决方案(源代码

ASP.NET MVC基于标注特性的Model验证:一个Model,多种验证规则

原文:ASP.NET MVC基于标注特性的Model验证:一个Model,多种验证规则 对于Model验证,理想的设计应该是场景驱动的,而不是Model(类型)驱动的,也就是对于同一个Model对象,在不同的使用场景中可能具有不同的验证规则.举个简单的例子,对于一个表示应聘者的数据对象来说,针对应聘的岗位不同,肯定对应聘者的年龄.性别.专业技能等方面有不同的要求.但是ASP.NET MVC的Model验证确是Model驱动的,因为验证规则以验证特性的形式应用到Model类型及其属性上.这样的验证

knowledge_based topic model KBTM

http://blog.csdn.net/pipisorry/article/details/44040701 术语 Mustlink states that two words should belong to the same topic Cannot-link states that two words should not belong to the same topic. DF-LDA is perhaps the earliest KBTM, which can incorporat