欧拉函数总结【数论】【欧拉函数】

欧拉函数的定义:euler(k)=([1,n-1]中与n互质的整数个数).

eg:euler(8)=4。由于1,3,5,7均和8互质

能够推出下面公式:

euler(k)=(p1-1)(p2-1)……(pi-1)*(p1^(a1-1))(p2^(a2-1))……(pi^(ai-1))

=k*(p1-1)(p2-1)……(pi-1)/(p1*p2*……pi);

=k*(1-1/p1)*(1-1/p2)....(1-1/pk) 

故euler函数表达通式:euler(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…(1-1/pn),当中p1,p2……pn为x的全部素因数,x是不为0的整数。euler(1)=1(唯一和1互质的数就是1本身)。

依据以上性质能够推出:

若(N%a==0
&& (N/a)%a==0) 则有:E(N)=E(N/a)*a;

若(N%a==0 && (N/a)%a!=0) 则有:E(N)=E(N/a)*(a-1);

欧拉公式的延伸:

  1. 一个数的全部质因子之和是euler(n)*n/2。
  2. 一个质数n的欧拉函数是n-1

以下给出求euler函数的程序:

//直接求解欧拉函数,返回euler(n)
int euler(int n){
     int res=n,a=n;
     for(int i=2;i*i<=a;i++){
         if(a%i==0){
             res=res/i*(i-1);   //先进行除法是为了防止中间数据的溢出
             while(a%i==0) a/=i;
         }
     }
     if(a>1) res=res/a*(a-1);
     return res;
}

在给出一个筛法打euler函数表:

//筛选法打欧拉函数表
#define Max 1000001
int euler[Max];
void Init(){
     euler[1]=1;
     for(int i=2;i<Max;i++)
       euler[i]=i;
     for(int i=2;i<Max;i++)
        if(euler[i]==i)
           for(int j=i;j<Max;j+=i)
              euler[j]=euler[j]/i*(i-1);
}

先撸一题:

poj3090   代码

时间: 2024-12-07 05:28:59

欧拉函数总结【数论】【欧拉函数】的相关文章

HDU 4002 Find the maximum(数论-欧拉函数)

Find the maximum Problem Description Euler's Totient function, φ (n) [sometimes called the phi function], is used to determine the number of numbers less than n which are relatively prime to n . For example, as 1, 2, 4, 5, 7, and 8, are all less than

欧拉函数性质与求法 [数论][欧拉函数]

n的欧拉函数值用符号φ(n)表示 欧拉函数的定义是,对于一个正整数n,小于n且与n互质的数的数目(包括1,特殊地,φ(1)=1 ). 设p1,p2,p3,...,pr为n的全部r个质因数,则有φ(n)=n*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)…..(1-1/pr). 显然,用这个方法来计算单个欧拉函数是可以求解的. 附上代码: 1 int get_phi(int x){ 2 int re=x; 3 for(int i=2;i*i<=x;i++) 4 if(x%i

POJ 2154 Color(组合数学-波利亚计数,数论-欧拉函数,数论-整数快速幂)

Color Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7693   Accepted: 2522 Description Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). Your job is to calculate how many different kinds of th

hdu1395 数论 欧拉函数

hdu1395 数论   欧拉函数对于给出的每一个n 求最小正整数 x 满足 2^x mod n = 1 1.如果给出的n 是偶数或者 1 则一定无解2.如果是奇数 首先根据欧拉定理 我们可知 phi(n)一定是满足要求的 然后答案一定是 phi( i ) 的因数 然后我们就可以 O(sqrt(phi(i))的时间内 枚举每个因数 然后快速幂验证就行了 1 #include <bits/stdc++.h> 2 using namespace std ; 3 4 const double eps

POJ2480 Longge&#39;s problem 欧拉函数的应用 &amp;&amp; 积性函数

题意很简单,求sum(gcd(i,n))   1<=i<=n; 这题看到后第一反应并没有里用积性函数的性质,不过也可以做,欣慰的是我反应还是比较快的 设f(n)=gcd(1,n)+gcd(2,n)+....+gcd(n-1,n) + gcd(n,n), 用g(n,i)表示满足 gcd(x,n)=i的 x的个数 (x小于n),则 f(n)=sum{i*g(n,i)}; 同时又利用 扩展欧几里德的性质  gcd(x,n)=i  的充要条件是 gcd(x/i,n/i)==1,所以 满足 x/i的解有

HDU2879 HeHe 数论积性函数

题目名字有点搓,做题时没做出来,学长他们做出了,发现跟网上题解的思路没太大区别,网上所有题解的分析也都转自同一个地方,看样子这道题目不是那么好想的,没办法按照解析画了半天,计算器按了半天,理解了,自己敲出来了,觉得值得留念,打算再刷几道这样的 转自:http://blog.csdn.net/kksleric/article/details/8096914 定义:对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f(ab)=f(a)f(b),在数论上就称它为积性函数.若对于某积

数论-欧拉函数

题目1 : 数论五·欧拉函数 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho有时候会用密码写信来互相联系,他们用了一个很大的数当做密钥.小Hi和小Ho约定了一个区间[L,R],每次小Hi和小Ho会选择其中的一个数作为密钥. 小Hi:小Ho,这次我们选[L,R]中的一个数K. 小Ho:恩,小Hi,这个K是多少啊? 小Hi:这个K嘛,不如这一次小Ho你自己想办法算一算怎么样?我这次选择的K满足这样一个条件: 假设φ(n)表示1..n-1中与n互质的数的个

ACM数论-欧几里得与拓展欧几里得

ACM数论--欧几里得与拓展欧几里得 欧几里得算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). int gcd(int a,int b) { return b ? gcd(b,a%b) : a; } 扩展欧几里德算法: 基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使

数论入门——莫比乌斯函数,欧拉函数,狄利克雷卷积,线性筛,莫比乌斯反演,杜教筛

一个菜鸡对数论的一点点理解... 莫比乌斯函数 定义函数\(\mu(n)\)为: 当n有平方因子时,\(\mu(n)=0\). 当n没有平方因子时,\(\mu(n)=(-1)^{\omega(n)}\),\(\omega(n)\)表示n不同质因子的个数. 性质1: \(\sum_{d|n}\mu(d)=[n=1]\) 证明:我们把n分解质因数,则原式\(=(-1+1)^{\omega(n)}=0\). 因为对于不同的质因子,只有选和不选两种方案,这是一个组合数相加的形式,偶数加奇数减,根据二项式

数论&#183;欧拉函数

欧拉函数$phi(n)$表示不超过$n$的正整数中与$n$互质的个数,并且有: $\varphi(n)= n\sum\limits_{p|n}(1-{\frac 1{p}})$ 显然有若$n$素数: $\varphi(n)=n-1$ 并且考虑$mp$,若$p$为素数,则对任意整数$k$: $(mp, k)\Leftrightarrow (m, k)$ 于是在每个模$p$的剩余系中有$\varphi(m)$个数与$mp$互质,因此: $\varphi(mp)=\varphi(m)\varphi(p