费马小定理:对于质数p和任意整数a,有a^p ≡ a(mod p)(同余)。反之,若满足a^p ≡ a(mod p),p也有很大概率为质数。 将两边同时约去一个a,则有a^(p-1) ≡ 1(mod p)
也即是说:假设我们要测试n是否为质数。我们可以随机选取一个数a,然后计算a^(n-1) mod n,如果结果不为1,我们可以100%断定n不是质数。
否则我们再随机选取一个新的数a进行测试。如此反复多次,如果每次结果都是1,我们就假定n是质数。
该测试被称为Fermat测试。需要注意的是:Fermat测试不一定是准确的,有可能出现把合数误判为质数的情况。
Miller和Rabin在Fermat测试上,建立了Miller-Rabin质数测试算法。
与Fermat测试相比,增加了一个二次探测定理:
如果p是奇素数,则 x^2 ≡ 1(mod p)的解为 x ≡ 1 或 x ≡ p - 1(mod p)
如果a^(n-1) ≡ 1 (mod n)成立,Miller-Rabin算法不是立即找另一个a进行测试,而是看n-1是不是偶数。如果n-1是偶数,另u=(n-1)/2,并检查是否满足二次探测定理即a^u ≡ 1 或 a^u ≡ n - 1(mod n)。
举个Matrix67 Blog上 的例子,假设n=341,我们选取的a=2。则第一次测试时,2^340 mod 341=1。由于340是偶数,因此我们检查2^170,得到2^170 mod 341=1,满足二次探测定理。同时由于170还是偶数,因此我们进一步检查2^85 mod 341=32。此时不满足二次探测定理,因此可以判定341不为质数。
将这两条定理合起来,也就是最常见的Miller-Rabin测试。
但一次MR测试仍然有一定的错误率。为了使我们的结果尽可能的正确,我们需要进行多次MR测试,这样可以把错误率降低。
时间: 2024-10-24 19:54:39