hdu1421(dp)

搬寝室

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 17130    Accepted Submission(s):
5805

Problem Description

搬寝室是很累的,xhd深有体会.时间追述2006年7月9号,那天xhd迫于无奈要从27号楼搬到3号楼,因为10号要封楼了.看着寝室里的n件物品,xhd开始发呆,因为n是一个小于2000的整数,实在是太多了,于是xhd决定随便搬2*k件过去就行了.但还是会很累,因为2*k也不小是一个不大于n的整数.幸运的是xhd根据多年的搬东西的经验发现每搬一次的疲劳度是和左右手的物品的重量差的平方成正比(这里补充一句,xhd每次搬两件东西,左手一件右手一件).例如xhd左手拿重量为3的物品,右手拿重量为6的物品,则他搬完这次的疲劳度为(6-3)^2
= 9.现在可怜的xhd希望知道搬完这2*k件物品后的最佳状态是怎样的(也就是最低的疲劳度),请告诉他吧.

Input

每组输入数据有两行,第一行有两个数n,k(2<=2*k<=n<2000).第二行有n个整数分别表示n件物品的重量(重量是一个小于2^15的正整数).

Output

对应每组输入数据,输出数据只有一个表示他的最少的疲劳度,每个一行.

Sample Input

2 1

1 3

Sample Output

4

解题思路:一道DP题

给定n个物品,每个物品有重量,
   从中选出m对,使得这m对物品重量差的平方和最小。
   疲劳度:m对物品重量差的平方和
   分析与解题思路
   先对n中物品的重量排序
   令dp[i][j]表示前i个物品中选j对的最小疲劳度。
   则dp[i][j]可能含有第i个物品(这种情况下,第i种物品一定是和第i-1个物品配对),
   则dp[i][j]=dp[i-2][j-1]+(a[i]-a[i-1])*(a[i]-a[i-1])
    dp[i][j]的j对也可能不含有第i个物品,此时有
   dp[i][j]=dp[i-1][j]
   状态转移方程
   dp[i][j]=min{dp[i-2][j-1]+(a[i]-a[i-1])*(a[i]-a[i-1]),dp[i-1][j]

 1 #include<iostream>
 2 #include<stdio.h>
 3 #include<string.h>
 4 #include<math.h>
 5 #include<algorithm>
 6 #define inf 99999999
 7 using namespace std;
 8 int dp[2005][1005];
 9 int cmp(const void *a,const void *b)
10 {
11     return *(int *)a-*(int *)b;
12 }
13 int main()
14 {
15     int n,k,i,j,a[2005];
16     while(scanf("%d%d",&n,&k)!=EOF)
17     {
18
19         a[0]=0;
20         for(i=1; i<=n; i++)
21             scanf("%d",&a[i]);
22         for(i=0; i<=n; i++)
23             for(j=1; j<=k; j++)
24                 dp[i][j]=inf;
25         dp[0][0]=0;
26         qsort(a+1,n,sizeof(a[0]),cmp);
27         for(i=2; i<=n; i++)
28             for(j=1; j*2<=i; j++)
29                 dp[i][j]=min(dp[i-2][j-1]+(a[i]-a[i-1])*(a[i]-a[i-1]),dp[i-1][j]);
30         printf("%d\n",dp[n][k]);
31     }
32     return 0;
33 }

hdu1421(dp)

时间: 2024-10-18 21:46:30

hdu1421(dp)的相关文章

hdu1421 搬寝室(dp)

此题是动态规划题. 解题思路: 用w[i]存储n个物品的重量,对其进行排序. 那么当取了第i个物品,必然会取第i-1个物品. 令dp[i][j]表示前i个物品,取j对的最小疲劳度. 若取第i个物品 则:dp[i][j]=dp[i-2][j-1]+(w[i]-w[i-1])*(w[i]-w[i-1]): 若不取第i个物品 则:dp[i][j]=dp[i-1][j]: 所以状态转移方程为:dp[i][j]=min(dp[i-2][j-1]+(w[i]-w[i-1])*(w[i]-w[i-1]),dp

hdu1421 搬寝室(dp)

/* 先对n中物品的重量排序 令dp[i][j]表示前i个物品中选j对的最小疲劳度. 则dp[i][j]可能含有第i个物品(这种情况下,第i种物品一定是和第i-1个物品配对), 则dp[i][j]=dp[i-2][j-1]+(val[i]-val[i-1])*(val[i]-val[i-1]) dp[i][j]的j对也可能不含有第i个物品,此时有 dp[i][j]=dp[i-1][j] 状态转移方程 dp[i][j]=min{dp[i-2][j-1]+(val[i]-val[i-1])*(val

HDU1421:搬寝室(线性dp)

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1421 又是一道,没有思想的题,看了题解,我发现我的dp题几乎都看了题解,我总是想不好状态转移方程,汗颜,以后怎么比赛啊. 先排序,然后说一个数学问题. 首先,要怎么搬呢?即每一对要怎么取?如果有abcd四个数,且a<b<c<d,应该是取ab,cd好呢还是ac,bd好?抑或是bc,ad好呢?答案是第一种,因为: (a-b)^2+(c-d)^2 < (a-c)^2+(b-d)^2 (a-b)^

Dp Hdu1421 搬寝室

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1421 对每相邻的一对取或者不取 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 #include <cstdio> #include <cstdlib> #include <cstring> #incl

搬寝室(HDU1421)

Problem Description 搬寝室是很累的,xhd深有体会.时间追述2006年7月9号,那天xhd迫于无奈要从27号楼搬到3号楼,因为10号要封楼了.看着寝室里的n件物品,xhd开始发呆,因为n是一个小于2000的整数,实在是太多了,于是xhd决定随便搬2*k件过去就行了.但还是会很累,因为2*k也不小是一个不大于n的整数.幸运的是xhd根据多年的搬东西的经验发现每搬一次的疲劳度是和左右手的物品的重量差的平方成正比(这里补充一句,xhd每次搬两件东西,左手一件右手一件).例如xhd左

HDU 5542 The Battle of Chibi dp+树状数组

题目:http://acm.hdu.edu.cn/showproblem.php?pid=5542 题意:给你n个数,求其中上升子序列长度为m的个数 可以考虑用dp[i][j]表示以a[i]结尾的长度为j的上升子序列有多少 裸的dp是o(n2m) 所以需要优化 我们可以发现dp的第3维是找比它小的数,那么就可以用树状数组来找 这样就可以降低复杂度 #include<iostream> #include<cstdio> #include<cstring> #include

hdu 1207 汉诺塔II (DP+递推)

汉诺塔II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4529    Accepted Submission(s): 2231 Problem Description 经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往

POJ - 3186 Treats for the Cows (区间DP)

题目链接:http://poj.org/problem?id=3186 题意:给定一组序列,取n次,每次可以取序列最前面的数或最后面的数,第n次出来就乘n,然后求和的最大值. 题解:用dp[i][j]表示i~j区间和的最大值,然后根据这个状态可以从删前和删后转移过来,推出状态转移方程: dp[i][j]=max(dp[i+1][j]+value[i]*k,dp[i][j-1]+value[j]*k) 1 #include <iostream> 2 #include <algorithm&

51Nod 1009 数字1的个数 | 数位DP

题意: 小于等于n的所有数中1的出现次数 分析: 数位DP 预处理dp[i][j]存 从1~以j开头的i位数中有几个1,那么转移方程为: if(j == 1) dp[i][j] = dp[i-1][9]*2+pow(10,i-1);else dp[i][j] = dp[i-1][9]+dp[i][j-1]; 然后注意下对于每个询问统计的时候如果当前位为1需要额外加上他后面所有位数的个数,就是n%pow(10,i-1); 这样总复杂度log(n)*10 #include <bits/stdc++.