Maximum sum
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 33363 | Accepted: 10330 |
Description
Given a set of n integers: A={a1, a2,..., an}, we define a function d(A) as below:
Your task is to calculate d(A).
Input
The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input.
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case.
Output
Print exactly one line for each test case. The line should contain the integer d(A).
Sample Input
1 10 1 -1 2 2 3 -3 4 -4 5 -5
Sample Output
13
Hint
In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer.
Huge input,scanf is recommended.
Source
POJ Contest,Author:[email protected]
解题思路:
题意要求为给定一个数字序列,找出两段不相交的子段,使这两个子段的和最大,求出这个最大值。
dp[i]表示 从位置1到i 之间的最大子段和,正向求一遍。然后逆向求最大子段和,比如逆向求出当前位置i的最大字段和为sum,那么 ans= max( ans,dp[i-1]+sum), ans即为答案。
代码:
#include <iostream> #include <stdio.h> #include <string.h> using namespace std; const int maxn=50010; const int inf=-0x7fffffff; int dp[maxn]; int num[maxn]; int t,n; void DP()//正向求最大子段和 { memset(dp,0,sizeof(dp)); int sum=inf,b=inf; for(int i=1;i<=n;i++) { if(b>0) b+=num[i]; else b=num[i]; if(b>sum) { sum=b; dp[i]=sum; } } } int main() { scanf("%d",&t); while(t--) { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&num[i]); DP(); int ans=inf,b=0,sum=inf;//逆向求n到i最大字段和,与正向的最大字段和相加,求出最大值 for(int i=n;i>1;i--) { if(b>0) b+=num[i]; else b=num[i]; if(b>sum) sum=b; if(sum+dp[i-1]>ans) ans=sum+dp[i-1]; } printf("%d\n",ans); } return 0; }
[ACM] POJ 2479 Maximum sum (动态规划求不相交的两段子段和的最大值)