非线性回归支持向量机——MATLAB源码

支持向量机和神经网络都可以用来做非线性回归拟合,但它们的原理是不相同的,支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强。大量仿真证实,支持向量机的泛化能力强于神经网络,而且能避免神经网络的固有缺陷——训练结果不稳定。本源码可以用于线性回归、非线性回归、非线性函数拟合、数据建模、预测、分类等多种应用场合。

function [Alpha1,Alpha2,Alpha,Flag,B]=SVMNR(X,Y,Epsilon,C,TKF,Para1,Para2)
%%
% SVMNR.m
% Support Vector Machine for Nonlinear Regression
% All rights reserved
%%
% 支持向量机非线性回归通用程序
程序功能:
% 使用支持向量机进行非线性回归,得到非线性函数y=f(x1,x2,…,xn)的支持向量解析式,
% 求解二次规划时调用了优化工具箱的quadprog函数。本函数在程序入口处对数据进行了
% [-1,1]的归一化处理,所以计算得到的回归解析式的系数是针对归一化数据的,仿真测
% 试需使用与本函数配套的Regression函数。
% 输入参数列表
% X 输入样本原始数据,n×l的矩阵,n为变量个数,l为样本个数
% Y 输出样本原始数据,1×l的矩阵,l为样本个数
% Epsilon ε不敏感损失函数的参数,Epsilon越大,支持向量越少
% C 惩罚系数,C过大或过小,泛化能力变差
% TKF Type of Kernel Function 核函数类型
% TKF=1 线性核函数,注意:使用线性核函数,将进行支持向量机的线性回归
% TKF=2 多项式核函数
% TKF=3 径向基核函数
% TKF=4 指数核函数
% TKF=5 Sigmoid核函数
% TKF=任意其它值,自定义核函数
% Para1 核函数中的第一个参数
% Para2 核函数中的第二个参数
% 注:关于核函数参数的定义请见Regression.m和SVMNR.m内部的定义
% 输出参数列表
% Alpha1 α系数
% Alpha2 α*系数
% Alpha 支持向量的加权系数(α-α*)向量
% Flag 1×l标记,0对应非支持向量,1对应边界支持向量,2对应标准支持向量
% B 回归方程中的常数项
%--------------------------------------------------------------------------

%%
%-----------------------数据归一化处理--------------------------------------
nntwarn off
X=premnmx(X);
Y=premnmx(Y);
%%
%%
%-----------------------核函数参数初始化------------------------------------
switch TKF
case 1
%线性核函数 K=sum(x.*y)
%没有需要定义的参数
case 2
%多项式核函数 K=(sum(x.*y)+c)^p
c=Para1;%c=0.1;
p=Para2;%p=2;
case 3
%径向基核函数 K=exp(-(norm(x-y))^2/(2*sigma^2))
sigma=Para1;%sigma=6;
case 4
%指数核函数 K=exp(-norm(x-y)/(2*sigma^2))
sigma=Para1;%sigma=3;
case 5
%Sigmoid核函数 K=1/(1+exp(-v*sum(x.*y)+c))
v=Para1;%v=0.5;
c=Para2;%c=0;
otherwise
%自定义核函数,需由用户自行在函数内部修改,注意要同时修改好几处!
%暂时定义为 K=exp(-(sum((x-y).^2)/(2*sigma^2)))
sigma=Para1;%sigma=8;
end
%%
%%
%-----------------------构造K矩阵-------------------------------------------
l=size(X,2);
K=zeros(l,l);%K矩阵初始化
for i=1:l
for j=1:l
x=X(:,i);
y=X(:,j);
switch TKF%根据核函数的类型,使用相应的核函数构造K矩阵
case 1
K(i,j)=sum(x.*y);
case 2
K(i,j)=(sum(x.*y)+c)^p;
case 3
K(i,j)=exp(-(norm(x-y))^2/(2*sigma^2));
case 4
K(i,j)=exp(-norm(x-y)/(2*sigma^2));
case 5
K(i,j)=1/(1+exp(-v*sum(x.*y)+c));
otherwise
K(i,j)=exp(-(sum((x-y).^2)/(2*sigma^2)));
end
end
end
%%
%%
%------------构造二次规划模型的参数H,Ft,Aeq,Beq,lb,ub------------------------
%支持向量机非线性回归,回归函数的系数,要通过求解一个二次规划模型得以确定
Ft=[Epsilon*ones(1,l)-Y,Epsilon*ones(1,l)+Y];
Aeq=[ones(1,l),-ones(1,l)];
Beq=0;
ub=C*ones(2*l,1);
%%
%%
%--------------调用优化工具箱quadprog函数求解二次规划------------------------
OPT=optimset;
OPT.LargeScale=‘off‘;
OPT.Display=‘off‘;
%%
%%
%------------------------整理输出回归方程的系数------------------------------
Alpha1=(Gamma(1:l,1))‘;
Alpha2=(Gamma((l+1):end,1))‘;
Alpha=Alpha1-Alpha2;
Flag=2*ones(1,l);
%%
%%
%---------------------------支持向量的分类----------------------------------
Err=0.000000000001;
for i=1:l
AA=Alpha1(i);
BB=Alpha2(i);
if (abs(AA-0)<=Err)&&(abs(BB-0)<=Err)
Flag(i)=0;%非支持向量
end
if (AA>Err)&&(AA<C-ERR)&&(ABS(BB-0)<=ERR)
Flag(i)=2;%标准支持向量
end
if (abs(AA-0)<=Err)&&(BB>Err)&&(BB<C-ERR)
Flag(i)=2;%标准支持向量
end
if (abs(AA-C)<=Err)&&(abs(BB-0)<=Err)
Flag(i)=1;%边界支持向量
end
if (abs(AA-0)<=Err)&&(abs(BB-C)<=Err)
Flag(i)=1;%边界支持向量
end
end
%%
%%
%--------------------计算回归方程中的常数项B---------------------------------
B=0;
counter=0;
for i=1:l
AA=Alpha1(i);
BB=Alpha2(i);
if (AA>Err)&&(AA<C-ERR)&&(ABS(BB-0)<=ERR)
%计算支持向量加权值
SUM=0;
for j=1:l
if Flag(j)>0
switch TKF
case 1
SUM=SUM+Alpha(j)*sum(X(:,j).*X(:,i));
case 2
SUM=SUM+Alpha(j)*(sum(X(:,j).*X(:,i))+c)^p;
case 3
SUM=SUM+Alpha(j)*exp(-(norm(X(:,j)-X(:,i)))^2/(2*sigma^2));
case 4
SUM=SUM+Alpha(j)*exp(-norm(X(:,j)-X(:,i))/(2*sigma^2));
case 5
SUM=SUM+Alpha(j)*1/(1+exp(-v*sum(X(:,j).*X(:,i))+c));
otherwise
SUM=SUM+Alpha(j)*exp(-(sum((X(:,j)-X(:,i)).^2)/(2*sigma^2)));
end
end
end
b=Y(i)-SUM-Epsilon;
B=B+b;
counter=counter+1;
end
if (abs(AA-0)<=Err)&&(BB>Err)&&(BB<C-ERR)
SUM=0;
for j=1:l
if Flag(j)>0
switch TKF
case 1
SUM=SUM+Alpha(j)*sum(X(:,j).*X(:,i));
case 2
SUM=SUM+Alpha(j)*(sum(X(:,j).*X(:,i))+c)^p;
case 3
SUM=SUM+Alpha(j)*exp(-(norm(X(:,j)-X(:,i)))^2/(2*sigma^2));
case 4
SUM=SUM+Alpha(j)*exp(-norm(X(:,j)-X(:,i))/(2*sigma^2));
case 5
SUM=SUM+Alpha(j)*1/(1+exp(-v*sum(X(:,j).*X(:,i))+c));
otherwise
SUM=SUM+Alpha(j)*exp(-(sum((X(:,j)-X(:,i)).^2)/(2*sigma^2)));
end
end
end
b=Y(i)-SUM+Epsilon;
B=B+b;
counter=counter+1;
end
end
if counter==0
B=0;
else
B=B/counter;
end

function y=Regression(Alpha,Flag,B,X,Y,TKF,Para1,Para2,x)
%--------------------------------------------------------------------------
% Regression.m
% 与SVMNR.m函数配套使用的仿真测试函数
% 函数功能:
% 本函数相当于支持向量得到的回归方程的解析方程,输入一个待测试的列向量x,得到一
% 个对应的输出值y
%--------------------------------------------------------------------------
% 输入参数列表
% Alpha 支持向量的加权系数(α-α*)向量
% Flag 1×l标记,0对应非支持向量,1对应边界支持向量,2对应标准支持向量
% B 回归方程中的常数项
% X 输入样本原始数据,n×l的矩阵,n为变量个数,l为样本个数
% Y 输出样本原始数据,1×l的矩阵,l为样本个数
% Para1 核函数中的第一个参数
% Para2 核函数中的第二个参数
% 注:关于核函数参数的定义请见Regression.m和SVMNR.m内部的定义
% x 待测试的原始数据,n×1的列向量
% 输出参数列表
% y 仿真测试的输出值

%%
%-----------------------核函数参数初始化------------------------------------
switch TKF
case 1
%线性核函数 K=sum(x.*y)
%没有需要定义的参数
case 2
%多项式核函数 K=(sum(x.*y)+c)^p
c=Para1;%c=0.1;
p=Para2;%p=2;
case 3
%径向基核函数 K=exp(-(norm(x-y))^2/(2*sigma^2))
sigma=Para1;%sigma=6;
case 4
%指数核函数 K=exp(-norm(x-y)/(2*sigma^2))
sigma=Para1;%sigma=3;
case 5
%Sigmoid核函数 K=1/(1+exp(-v*sum(x.*y)+c))
v=Para1;%v=0.5;
c=Para2;%c=0;
otherwise
%自定义核函数,需由用户自行在函数内部修改,注意要同时修改好几处!
%暂时定义为 K=exp(-(sum((x-y).^2)/(2*sigma^2)))
sigma=Para1;%sigma=8;
end
%%
%%
%----------------------数据归一化处理---------------------------------------
[X,minX,maxX]=premnmx(X);
x=2*((x-minX)./(maxX-minX))-1;
[Y,minY,maxY]=premnmx(Y);
%%
%%
%---------------------计算仿真测试的输出值----------------------------------
l=length(Alpha);
SUM=0;
for i=1:l
if Flag(i)>0
switch TKF
case 1
SUM=SUM+Alpha(i)*sum(x.*X(:,i));
case 2
SUM=SUM+Alpha(i)*(sum(x.*X(:,i))+c)^p;
case 3
SUM=SUM+Alpha(i)*exp(-(norm(x-X(:,i)))^2/(2*sigma^2));
case 4
SUM=SUM+Alpha(i)*exp(-norm(x-X(:,i))/(2*sigma^2));
case 5
SUM=SUM+Alpha(i)*1/(1+exp(-v*sum(x.*X(:,i))+c));
otherwise
SUM=SUM+Alpha(i)*exp(-(sum((x-X(:,i)).^2)/(2*sigma^2)));
end
end
end
y=SUM+B;
%%
%%
%--------------------反归一化处理-------------------------------------------
y=postmnmx(y,minY,maxY);

时间: 2024-10-08 20:48:20

非线性回归支持向量机——MATLAB源码的相关文章

群智能优化算法-测试函数matlab源码

群智能优化算法测试函数matlab源代码 global M; creatematrix(2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %画ackley图. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ackley x from[-5 5] % x=-5:0.01:5; % [x,y]=meshgrid(x); % temp1=x.^2+y.^2; % temp2=cos(2*pi*x)+cos(2*pi*y); % z=20+

图像处理MATLAB源码

图像反转 I=imread('nickyboom.jpg'); J=double(I); J=-J+(256-1);                 %图像反转线性变换 H=uint8(J); subplot(1,2,1),imshow(I); subplot(1,2,2),imshow(H); 直方图均衡化 MATLAB 程序实现如下: I=imread('nickyboom.jpg); I=rgb2gray(I); figure; subplot(2,2,1); imshow(I); sub

根据MATLAB的histeq函数改写的运行在OpenCV下的直方图规定化C源码!

据说,图像的直方图规定化比直方图均衡化用得更多,但是很奇怪的是OpenCV居然没有图像直方图规定化的源码!所以,我就有必要在OpenCV下写一个图像直方图规定化处理的函数,以方便将来使用. 我在网上找了几个直方图均稀化的源码,并基于OpenCV来改写这些源码,效果都不如MATLAB的histeq函数,这其中改写的艰辛与繁琐就不细说了.最后,没办法,只好学习MATALB的histeq函数源码,并对其进行基于OpenCV的改写. 虽然我最终改写成功了,但是对算法还是不太理解,只能按照MATLAB的帮

PLSA模型的再理解以及源码分析

PLSA模型的再理解以及源码分析 之前写过一篇PLSA的博文,其中的收获就是知道PLSA是LSA在概率层面的扩展,知道了PLSA是一种主题模型,知道了PLSA中的参数估计使用的是EM算法.当时我就认为,这样子经典好用的算法,我是会回头再来理解它的,这样子才会有更加深刻的心得.所以有了这篇PLSA模型的再理解. 1. 两种思路解PLSA模型 参考了很多资料,发现大体上有两种解决PLSA模型的思路.下面我们大致说一下它们的思路. 思路一:EM算法中需要更新两个概率 PLSA模型的示意图如下: 其中包

Matlab.NET混合编程技巧之——直接调用Matlab内置函数(附源码)

原文:[原创]Matlab.NET混合编程技巧之--直接调用Matlab内置函数(附源码) 在我的上一篇文章[原创]Matlab.NET混编技巧之--找出Matlab内置函数中,已经大概的介绍了matlab内置函数在混合编程中的优点,并通过程序找出了matlab中的大部分内置函数,当然更多人关心是如何像我所说得那样,不用直接编译,就直接在C#中调用这些内置函数.本文就带你揭开这些谜团. 声明,这篇文章是需要一点点混合编程基础的,基本概念和过程要懂一点,如果能简单成功混编一个简单的计算或者绘图例子

实验报告: 人脸识别方法回顾与实验分析 【OpenCV测试方法源码】

趁着还未工作,先把过去做的东西整理下出来~   Github源码:https://github.com/Blz-Galaxy/OpenCV-Face-Recognition (涉及个人隐私,源码不包含测试样本,请谅解~) 对实验结果更感兴趣的朋友请直接看 第5章 [摘要]这是一篇关于人脸识别方法的实验报告.报告首先回顾了人脸识别研究的发展历程及基本分类:随后对人脸识别技术方法发展过程中一些经典的流行的方法进行了详细的阐述:最后作者通过设计实验对比了三种方法的识别效果并总结了人脸识别所面临的困难与

Expectation Maximization-EM(期望最大化)-算法以及源码

在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable).最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering) 领域.最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值:第二步是最大化(M),最大 化在 E 步上求得的最大似然值来计算参数的值.M 步上找到的参数估计值被用于下一个 E 步计算

spark.mllib源码阅读-优化算法1-Gradient

Spark中定义的损失函数及梯度,在看源码之前,先回顾一下机器学习中定义了哪些损失函数,毕竟梯度求解是为优化求解损失函数服务的. 监督学习问题是在假设空间F中选取模型f作为决策函数,对于给定的输入X,由f(X)给出相应的输出Y,这个输出的预测值f(X)与真实值Y可能一致也可能不一致,用一个损失函数(lossfunction)或代价函数(cost function)来度量预测错误的程度.损失函数是f(X)和Y的非负实值函数,记作L(Y, f(X)). 统计学习中常用的损失函数有以下几种: (1)

【机器学习经典算法源码分析系列】-- 线性回归

一.单变量线性回归: 1.数据集可视化 2.求解模型参数 对于线性回归模型,有两种方法可以求解模型参数. 1)  梯度下降法 将代价函数代入展开: Matlab代码实现: 2)  正规方程 Matlab代码实现: 关于正规方程的推导: 3)梯度下降法和正规方程比较 由控制台输出模型参数和回归直线可知,两者得到的结果很相近,具体选择什么方法参照以下标准. 二.多变量线性回归 多变量线性回归求解步骤和单变量线性回归相似,值得注意的一个问题是: 对于多个特征变量,在计算模型参数之前要记得进行特征缩放,