Learning Spark: Lightning-Fast Big Data Analysis 中文翻译

Learning Spark: Lightning-Fast Big Data Analysis 中文翻译行为纯属个人对于Spark的兴趣,仅供学习。

如果我的翻译行为侵犯您的版权,请您告知,我将停止对此书的开源翻译。

Translation the book of Learning Spark: Lightning-Fast Big Data Analysis is only for spark developer educational purposes. If I violated your copyright, please let me know.

Learning Spark 英文原版

Learning Spark: Lightning-Fast Big Data Analysis  http://shop.oreilly.com/product/0636920028512.do

在 databricks 官网上发布了此书的优惠码(promo code: BWORM),在购买时别忘了使用省银子。 https://databricks.com/spark/developer-resources

中文翻译

GitHub: https://github.com/gaoxuesong/learning-spark-lightning-fast-big-data-analysis

GitBook: http://xuesong.gitbooks.io/learningspark/

GitBook is a tool for building beautiful books using Git and Markdown. It can generate your book in multiple formats: PDF, ePub, mobi or as a website.

GitHub上分享了中文翻译的PDF版和原书源码,GitBook则可分享中文翻译的多种文件格式(PDF, ePub, mobi and website)。

目前此书的翻译进度由我的业余空余时间和兴趣所决定,无法预知翻译的结束时间和进度表。另外对于此书的翻译只关注技术部分,因此翻译从第二章开始。

Examples for Learning Spark

codes https://github.com/gaoxuesong/learning-spark/  forked from https://github.com/databricks/learning-spark

About the Orignal Author

About the Orignal Author

Holden Karau is a software development engineer at Databricks and is active in open source. She is the author of an earlier Spark book. Prior to Databricks she worked on a variety of search and classification problems at Google, Foursquare, and Amazon. She graduated from the University of Waterloo with a Bachelors of Mathematics in Computer Science. Outside of software she enjoys playing with fire, welding, and hula hooping.

Most recently, Andy Konwinski co-founded Databricks. Before that he was a PhD student and then postdoc in the AMPLab at UC Berkeley, focused on large scale distributed computing and cluster scheduling. He co-created and is a committer on the Apache Mesos project. He also worked with systems engineers and researchers at Google on the design of Omega, their next generation cluster scheduling system. More recently, he developed and led the AMP Camp Big Data Bootcamps and first Spark Summit, and has been contributing to the Spark project.

Patrick Wendell is an engineer at Databricks as well as a Spark Committer and PMC member. In the Spark project, Patrick has acted as release manager for several Spark releases, including Spark 1.0. Patrick also maintains several subsystems of Spark‘s core engine. Before helping start Databricks, Patrick obtained an M.S. in Computer Science at UC Berkeley. His research focused on low latency scheduling for large scale analytics workloads. He holds a B.S.E in Computer Science from Princeton University

Matei Zaharia is the creator of Apache Spark and CTO at Databricks. He holds a PhD from UC Berkeley, where he started Spark as a research project. He now serves as its Vice President at Apache. Apart from Spark, he has made research and open source contributions to other projects in the cluster computing area, including Apache Hadoop (where he is a committer) and Apache Mesos (which he also helped start at Berkeley).

时间: 2024-10-08 05:34:43

Learning Spark: Lightning-Fast Big Data Analysis 中文翻译的相关文章

Spark的Python和Scala shell介绍(翻译自Learning.Spark.Lightning-Fast.Big.Data.Analysis)

Spark提供了交互式shell,交互式shell让我们能够点对点(原文:ad hoc)数据分析.如果你已经使用过R,Python,或者Scala中的shell,或者操作系统shell(例如bash),又或者Windows的命令提示符界面,你将会对Spark的shell感到熟悉. 但实际上Spark shell与其它大部分shell都不一样,其它大部分shell让你通过单个机器上的磁盘或者内存操作数据,Spark shell让你可以操作分布在很多机器上的磁盘或者内存里的数据,而Spark负责在集

Python For Data Analysis -- NumPy

NumPy作为python科学计算的基础,为何python适合进行数学计算,除了简单易懂,容易学习 Python可以简单的调用大量的用c和fortran编写的legacy的库   The NumPy ndarray: A Multidimensional Array Object ndarray,可以理解为n维数组,用于抽象矩阵和向量 Creating ndarrays 最简单的就是,从list初始化, 当然还有其他的方式,比如, 汇总,     Data Types for ndarrays

Python.Data.Analysis(PACKT,2014)pdf

下载地址:网盘下载 Finding great data analysts is difficult. Despite the explosive growth of data in industries ranging from manufacturing and retail to high technology, finance, and healthcare, learning and accessing data analysis tools has remained a challe

Data analysis system

A data analysis system, particularly, a system capable of efficiently analyzing big data is provided. The data analysis system includes an analyst server, at least one data storage unit, a client terminal independent of the analyst server, and a cach

[Immutable.js] Lightning Fast Immutable.js Equality Checks with Hash Codes

While Immutable.js offers .is() to confirm value equality between iterables it comes at the cost of referencing each key and value in both objects. For lightning fast equality checks, Immutable.js can produce a hash code based on an iterable's conten

Python For Data Analysis -- Pandas

首先pandas的作者就是这本书的作者 对于Numpy,我们处理的对象是矩阵 pandas是基于numpy进行封装的,pandas的处理对象是二维表(tabular, spreadsheet-like),和矩阵的区别就是,二维表是有元数据的 用这些元数据作为index更方便,而Numpy只有整形的index,但本质是一样的,所以大部分操作是共通的 大家碰到最多的二维表应用,关系型数据库中的表,有列名和行号,这些就是元数据 当然你可以用抽象的矩阵来对这些二维表做统计,但使用pandas会更方便  

《Python For Data Analysis》学习笔记-1

在引言章节里,介绍了MovieLens 1M数据集的处理示例.书中介绍该数据集来自GroupLens Research(http://www.groupLens.org/node/73),该地址会直接跳转到https://grouplens.org/datasets/movielens/,这里面提供了来自MovieLens网站的各种评估数据集,可以下载相应的压缩包,我们需要的MovieLens 1M数据集也在里面. 下载解压后的文件夹如下: 这三个dat表都会在示例中用到,但是我所阅读的<Pyt

About Data Analysis

About Data Analysis 工具不能解决代码中的问题.它可以帮助你更好地了解你的代码正在做什么,通过捕捉应用程序运行时的详细统计信息,并将它们呈现给你进行分析.由于每个应用程序都不同,查找和解决问题的实际步骤各不相同.因此,您必须学习如何通过过滤不需要的数据来解释信息工具,并钻入与应用程序相关的数据.然后,您必须执行一些检查工作,将您识别的任何数据与应用程序中的代码关联起来,这样您就可以进行改进.Instruments doesn't fix problems with your c

Python For Data Analysis -- IPython

IPython Basics 首先比一般的python shell更方便一些 比如某些数据结构的pretty-printed,比如字典 更方便的,整段代码的copy,执行 并且可以兼容部分system shell , 比如目录浏览,文件操作等   Tab Completion 这个比较方便,可以在下面的case下,提示和补全未输入部分 a. 当前命名空间中的名字 b.对象或模块的属性和函数 c. 文件路径   Introspection, 内省 ?,在标识符前或后加上,显示出对象状况和docst