题目链接:点击打开链接
题意:
给定n个物品, m个约束条件
把n个物品分到2个集合里
下面第一行表示i物品分到第一个集合里的花费
第二行表示分到第二个集合里的花费
第三行表示分物品的限制(1表示只能分到第一个集合,-1表示只能分到第二个集合,0无限制)
下面m行给出约束条件
u v cost 表示u v 两点必须能互相沟通,若两点已经在同一集合则花费为0 ,若不在同一集合则花费增加cost
问满足m个约束条件下的最小花费
思路:
首先感觉是网络流,==建图比较难想
用流量表示费用
1、若i点放入第一个集合,则向源点连一条流量为a[i]的边, 若放入第二个集合则向汇点连一条流量为b[i]的边
如此便可以使得一个点放入任意一个集合花费最小
2、对于约束条件 则向 u, v两点连一条无向的边,流量为cost
若u, v两点被第三行约束在同一集合,则这条边加了也不能增加流量,也就是费用增加0
若被约束在不同集合则相当于必然增加了cost
Orz
#include<stdio.h> #include<string.h> #include<iostream> #include<math.h> #include<algorithm> #include<queue> #include<vector> using namespace std; #define ll long long #define N 100040 #define M 205000 #define inf 107374182 #define inf64 1152921504606846976 struct Edge{ ll from, to, cap, nex; }edge[M*2];//注意这个一定要够大 不然会re 还有反向弧 ll head[N], edgenum; void add(ll u, ll v, ll cap, ll rw = 0){ //如果是有向边则:add(u,v,cap); 如果是无向边则:add(u,v,cap,cap); Edge E = { u, v, cap, head[u]}; edge[ edgenum ] = E; head[u] = edgenum ++; Edge E2= { v, u, rw, head[v]}; edge[ edgenum ] = E2; head[v] = edgenum ++; } ll sign[N]; bool BFS(ll from, ll to){ memset(sign, -1, sizeof(sign)); sign[from] = 0; queue<ll>q; q.push(from); while( !q.empty() ){ ll u = q.front(); q.pop(); for(ll i = head[u]; i!=-1; i = edge[i].nex) { ll v = edge[i].to; if(sign[v]==-1 && edge[i].cap) { sign[v] = sign[u] + 1, q.push(v); if(sign[to] != -1)return true; } } } return false; } ll Stack[N], top, cur[N]; ll Dinic(ll from, ll to){ ll ans = 0; while( BFS(from, to) ) { memcpy(cur, head, sizeof(head)); ll u = from; top = 0; while(1) { if(u == to) { ll flow = inf, loc;//loc 表示 Stack 中 cap 最小的边 for(ll i = 0; i < top; i++) if(flow > edge[ Stack[i] ].cap) { flow = edge[Stack[i]].cap; loc = i; } for(ll i = 0; i < top; i++) { edge[ Stack[i] ].cap -= flow; edge[Stack[i]^1].cap += flow; } ans += flow; top = loc; u = edge[Stack[top]].from; } for(ll i = cur[u]; i!=-1; cur[u] = i = edge[i].nex)//cur[u] 表示u所在能增广的边的下标 if(edge[i].cap && (sign[u] + 1 == sign[ edge[i].to ]))break; if(cur[u] != -1) { Stack[top++] = cur[u]; u = edge[ cur[u] ].to; } else { if( top == 0 )break; sign[u] = -1; u = edge[ Stack[--top] ].from; } } } return ans; } void init(){memset(head,-1,sizeof head);edgenum = 0;} ll n, m; ll a[N], b[N], c[N]; void input(){ ll u, v, cos; cin>>n>>m; init(); for(ll i = 1; i <= n; i++)scanf("%lld", &a[i]); for(ll i = 1; i <= n; i++)scanf("%lld", &b[i]); for(ll i = 1; i <= n; i++)scanf("%lld", &c[i]); } void work(){ ll from = 0, to = n+10, u, v, cos; for(ll i = 1; i <= n; i++) { if(c[i]==1) add(from, i, a[i]), add(i, to, inf); else if(c[i]==-1) add(from, i, inf), add(i, to, b[i]); else add(from, i, a[i]), add(i, to, b[i]); } while(m--) { scanf("%lld %lld %lld",&u,&v,&cos); add(u, v, cos); add(v, u, cos); } cout<<Dinic(from, to)<<endl; } int main(){ int T; cin>>T; while(T--){ input(); work(); } return 0; }
UVA 11765 Component Placement 网络流 新姿势建图
时间: 2024-10-21 12:30:42