hdu 1217 Arbitrage Floyd||SPFA

转载请注明出处:http://acm.hdu.edu.cn/showproblem.php?pid=1217

Problem Description

Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys
10.0 French francs, and 1 French franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent.

Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.

Input

The input file will contain one or more test cases. Om the first line of each test case there is an integer n (1<=n<=30), representing the number of different currencies. The next n lines each contain the name of one currency. Within
a name no spaces will appear. The next line contains one integer m, representing the length of the table to follow. The last m lines each contain the name ci of a source currency, a real number rij which represents the exchange rate from ci to cj and a name
cj of the destination currency. Exchanges which do not appear in the table are impossible.

Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line telling whether arbitrage is possible or not in the format "Case case: Yes" respectively "Case case: No".

Sample Input

3
USDollar
BritishPound
FrenchFranc
3
USDollar 0.5 BritishPound
BritishPound 10.0 FrenchFranc
FrenchFranc 0.21 USDollar

3
USDollar
BritishPound
FrenchFranc
6
USDollar 0.5 BritishPound
USDollar 4.9 FrenchFranc
BritishPound 10.0 FrenchFranc
BritishPound 1.99 USDollar
FrenchFranc 0.09 BritishPound
FrenchFranc 0.19 USDollar

0

Sample Output

Case 1: Yes
Case 2: No

Source

University of Ulm Local Contest 1996

题意:给几个国家,然后给这些国家之间的汇率。判断能否通过这些汇率差进行套利交易。

Floyd的算法可以求出任意两点间的最短路径,最后比较本国与本国的汇率差,如果大于1,则可以。否则不可以。

代码如下:

#include<cstdio>
#include<cstring>
#include<string>
#include<map>
#include<iostream>
using namespace std;
#define N 47
double M[N][N];
map<string,int>mm;
void init( int n)
{
	for(int i = 1 ; i <= n ; i++ )
	{
		for(int j = 1 ; j <= n ;j++)
		{
			if(i == j)
				M[i][j] = 1.0; //自身的汇率为1
			else
				M[i][j] = 0;
		}
	}
}
void floyd(int n)
{
	for(int k = 1 ; k <= n ;k++)
	{
		for(int i = 1 ; i <= n ;i++ )
		{
			for( int j = 1 ; j <= n ;j++ )
			{
				if(M[i][j] < M[i][k] * M[k][j])
				{
					M[i][j] = M[i][k] * M[k][j];
				}
			}
		}
	}
}
int main()
{

	char s1[147],s2[147],s[147];
	int n, m,cnt = 0;
	double gate;
	while(~scanf("%d",&n) && n)
	{
		init(n);
		for( int i = 1 ; i <= n ;i++)
		{
			scanf("%s",s);
			mm[s] = i;
		}
		scanf("%d",&m);
		for( int j = 1 ; j <= m ; j++)
		{
			scanf("%s%lf%s",s1,&gate,s2);
			M[mm[s1]][mm[s2]] = gate;
		}
		floyd( n );
		int flag = 0;
		for( i = 1 ; i<= n ; i++)
		{
			if(M[i][i] > 1)
			{
				flag = 1;
				break;
			}
		}
		if( flag == 1)
		{
			printf("Case %d: Yes\n",++cnt);
				continue;
		}
		printf("Case %d: No\n",++cnt);
	}
	return 0;
}

附SPFA代码:

#include <stdio.h>
#include <iostream>
#include <cstring>
#include <map>
#include <queue>
#include <algorithm>
using namespace std;

const int L = 35;
const double inf = 1000000;
map<string,int> mat;
int n,m;
char str[105],s1[105],s2[105];
double trip[35][35],dis[35];

int SPFA(int src)
{
    queue<int> Q;
    int vis[35],i;
    int num[35];
    for(i = 1; i<=n; i++)
        vis[i] = dis[i] = num[i] = 0;
    while(!Q.empty())
        Q.pop();
    dis[src] = 1.0;
    vis[src] = 1;
    Q.push(src);
    while(!Q.empty())
    {
        int now = Q.front();
        Q.pop();
        vis[now] = 0;
        for(i = 1; i<=n; i++)
        {
            if(dis[now]*trip[now][i]>dis[i])
            {
                dis[i] = dis[now]*trip[now][i];
                if(dis[src]>1.0)
                    return 1;
                if(!vis[i])
                {
                    vis[i] = 1;
                    Q.push(i);
                }
            }
        }
    }
    return 0;
}

int main()
{
    int i,j,cas = 1;
    double w;
    while(~scanf("%d",&n),n)
    {
        mat.clear();
        for(i = 1; i<=n; i++)
            for(j = 1; j<=n; j++)
                trip[i][j] = (i==j)?1.0:0;
        for(i = 1; i<=n; i++)
        {
            scanf("%s",str);
            mat[str] = i;
        }
        scanf("%d",&m);
        while(m--)
        {
            scanf("%s%lf%s",s1,&w,s2);
            trip[mat[s1]][mat[s2]] = w;
        }
        int flag = 0;
        for(i = 1; i<=n; i++)
        {
            if(SPFA(i))
            {
                flag = 1;
                break;
            }
        }
        printf("Case %d: %s\n",cas++,flag?"Yes":"No");
    }

    return 0;
}

hdu 1217 Arbitrage Floyd||SPFA

时间: 2024-12-21 19:44:37

hdu 1217 Arbitrage Floyd||SPFA的相关文章

hdu 1217 Arbitrage (spfa算法)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1217 题目大意:通过货币的转换,来判断是否获利,如果获利则输出Yes,否则输出No. 这里介绍一个STL中的map容器去处理数据,map<string,int>V,M; 现在我目前的理解是将字符串转换成数字,然后就是根据spfa的模板找最短路了..哇哈哈( ⊙o⊙ )哇 1 #include <iostream> 2 #include <cstdio> 3 #include

hdu 1217 (Floyd变形)

链接:http://acm.hdu.edu.cn/showproblem.php?pid=1217 Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4430    Accepted Submission(s): 2013 Problem Description Arbitrage is the use of discr

[ACM] hdu 1217 Arbitrage (bellman_ford最短路,判断是否有正权回路或Floyed)

Arbitrage Problem Description Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British p

HDU 1217 Arbitrage 【最短路,map+spfa】

Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6985    Accepted Submission(s): 3212 Problem Description Arbitrage is the use of discrepancies in currency exchange rates to transform

HDU 1217 Arbitrage(Bellman-Ford判断负环+Floyd)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1217 题目大意:问你是否可以通过转换货币从中获利 如下面这组样例: USDollar 0.5 BritishPound BritishPound 10.0 FrenchFranc FrenchFranc 0.21 USDollar 可以通过US->Br->French->US这样转换,把1美元变成1*0.5*10*0.21=1.05美元赚取%5的利润. 解题思路:其实就相当于bellman-

hdu 1217 Arbitrage 两种算法AC代码,Floyd+Bellman-Ford 大水题一枚 注意是有向图~~

Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 4998    Accepted Submission(s): 2286 Problem Description Arbitrage is the use of discrepancies in currency exchange rates to transform

hdu 1217 Arbitrage (Floyd + 最大路径)

Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 4899    Accepted Submission(s): 2241 Problem Description Arbitrage is the use of discrepancies in currency exchange rates to transform

HDU 1217 Arbitrage(最短路径,Floyd算法)

Problem Description Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys

杭电 ACM HDU 1217 Arbitrage(最短路 floyd算法)

Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 5272    Accepted Submission(s): 2418 Problem Description Arbitrage is the use of discrepancies in currency exchange rates to transform