python使用pipeline读写redis

用了很久的redis了。随着业务的要求越来越高。对redis的读写速度要求也越来越高。正好最近有个需求(需要在秒级取值1000+的数据),如果对于传统的单词取值,循环取值,消耗实在是大,有小伙伴可能考虑到多线程,但这并不是最好的解决方案,这里考虑到了redis特有的功能pipeline管道功能。下面就更大家演示一下pipeline在python环境下的使用情况。

1、插入数据

>>> import redis
>>> conn = redis.Redis(host=‘192.168.8.176‘,port=6379)
>>> pipe = conn.pipeline()
>>> pipe.hset("hash_key","leizhu900516",8)
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>
>>> pipe.hset("hash_key","chenhuachao",9)
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>
>>> pipe.hset("hash_key","wanger",10)
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>
>>> pipe.execute()
[1L, 1L, 1L]
>>> 
查看插入的结果:如图

2、批量读取数据

>>> pipe.hget("hash_key","leizhu900516")
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>
>>> pipe.hget("hash_key","chenhuachao")
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>
>>> pipe.hget("hash_key","wanger")
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>
>>> result = pipe.execute()
>>> print result
[‘8‘, ‘9‘, ‘10‘]   #有序的列表
>>>

总结:redis的pipeline就是这么简单,实际生产环境,根据需要去编写相应的代码。思路同理。线上的redis一般都是集群模式,集群模式下使用pipeline的时候,在创建pipeline的对象时,需要指定

pipe =conn.pipeline(transaction=False)

经过线上实测,利用pipeline取值3500条数据,大约需要900ms,如果配合线程or协程来使用,每秒返回1W数据是没有问题的,基本能满足大部分业务。

时间: 2024-10-01 02:48:22

python使用pipeline读写redis的相关文章

Java使用Pipeline对Redis批量读写(hmset&amp;hgetall)

一般情况下,Redis Client端发出一个请求后,通常会阻塞并等待Redis服务端处理,Redis服务端处理完后请求命令后会将结果通过响应报文返回给Client.这有点类似于HBase的Scan,通常是Client端获取每一条记录都是一次RPC调用服务端.在Redis中,有没有类似HBase Scanner Caching的东西呢,一次请求,返回多条记录呢?有,这就是Pipline.官方介绍 http://redis.io/topics/pipelining 通过pipeline方式当有大批

Java使用Pipeline对Redis批量读写(hmset&hgetall)

一般情况下,Redis Client端发出一个请求后,通常会阻塞并等待Redis服务端处理,Redis服务端处理完后请求命令后会将结果通过响应报文返回给Client. 这有点类似于HBase的Scan,通常是Client端获取每一条记录都是一次RPC调用服务端. 在Redis中,有没有类似HBase Scanner Caching的东西呢,一次请求,返回多条记录呢? 有,这就是Pipline.官方介绍 http://redis.io/topics/pipelining 通过pipeline方式当

Python之路【第九篇】:Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy

Python之路[第九篇]:Python操作 RabbitMQ.Redis.Memcache.SQLAlchemy Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度.Memcached基于一个存储键/值对的hashmap.其守护进程(daemon )是用C写的,但是客户端可以用任何语言来编写,并通过memcached协议与守护进程通信. Memc

Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy

Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度.Memcached基于一个存储键/值对的hashmap.其守护进程(daemon )是用C写的,但是客户端可以用任何语言来编写,并通过memcached协议与守护进程通信. Memcached安装和基本使用 Memcached安装: wget http://memcached.org/latest

Python操作RabbitMQ、Redis、Mencache、SQLAlchemy

Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度.Memcached基于一个存储键/值对的hashmap.其守护进程(daemon )是用C写的,但是客户端可以用任何语言来编写,并通过memcached协议与守护进程通信. Memcached安装和基本使用 Memcached安装: 1 2 3 4 5 6 7 8 wget http://memc

17.Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy

Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度.Memcached基于一个存储键/值对的hashmap.其守护进程(daemon )是用C写的,但是客户端可以用任何语言来编写,并通过memcached协议与守护进程通信. Memcached安装和基本使用 Memcached安装: ? 1 2 3 4 5 6 7 8 wget http://me

Python之路:Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy

Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度.Memcached基于一个存储键/值对的hashmap.其守护进程(daemon )是用C写的,但是客户端可以用任何语言来编写,并通过memcached协议与守护进程通信. Memcached安装和基本使用 Memcached安装: ? 1 2 3 4 5 6 7 8 wget http://me

python操作RabbitMQ、Redis、Memcache、SQLAlchemy

Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度.Memcached基于一个存储键/值对的hashmap.其守护进程(daemon )是用C写的,但是客户端可以用任何语言来编写,并通过memcached协议与守护进程通信. Memcached安装和基本使用 Memcached安装: ? 1 2 3 4 5 6 7 8 wget http://me

十一天 python操作rabbitmq、redis

1.启动rabbimq.mysql 在""运行""里输入services.msc,找到rabbimq.mysql启动即可 2.启动redis 管理员进入cmd,进入redis所在目录,执行redis-server.exe redis.windows.conf --maxmemory 200M  启动redis  server 执行redis-cli.exe启动客户端 一.python系列之 RabbitMQ - work queues 本节我们创建一个工作队列( w