奇异值分解(SVD) --- 几何意义

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义。能在有限的篇幅把这个问题讲解的如此清晰,实属不易。原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD。

原文:We recommend a singular value decomposition

关于线性变换部分的一些知识可以猛戳这里  奇异值分解(SVD) --- 线性变换几何意义

奇异值分解( The singular value decomposition )

该部分是从几何层面上去理解二维的SVD:对于任意的 2 x 2 矩阵,通过SVD可以将一个相互垂直的网格(orthogonal grid)变换到另外一个相互垂直的网格。

我们可以通过向量的方式来描述这个事实: 首先,选择两个相互正交的单位向量 v和 v2, 向量Mv1 和 Mv2 正交。

u1 和 u2分别表示Mv1 和 Mv2的单位向量,σ1 * u1 =  Mv1 和 σ2 * u2 =  Mv2。σ1 和 σ2分别表示这不同方向向量上的模,也称作为矩阵 M 的奇异值。

这样我们就有了如下关系式

Mv1 = σ1u1 
Mv2 = σ2u2

我们现在可以简单描述下经过 M 线性变换后的向量 x 的表达形式。由于向量v1 和 v2是正交的单位向量,我们可以得到如下式子:

x = (v1xv1 + (v2xv2

这就意味着:

Mx = (v1xMv1 + (v2xMv2 
Mx = (v1x) σ1u1 + (v2x) σ2u2

向量内积可以用向量的转置来表示,如下所示

vx = vTx

最终的式子为

Mx = u1σ1 v1Tx + u2σ2 v2Tx 
M = u1σ1 v1T + u2σ2 v2T

上述的式子经常表示成

M = UΣVT

矩阵的列向量分别是u1,u,Σ 是一个对角矩阵,对角元素分别是对应的σ1 和 σ2矩阵的列向量分别是v1,v2。上角标 T 表示矩阵 的转置。

这就表明任意的矩阵 M 是可以分解成三个矩阵。表示了原始域的标准正交基,表示经过 M 变换后的co-domain的标准正交基,Σ 表示了中的向量与中相对应向量之间的关系。(V describes an orthonormal basis in the domain, and U describes an orthonormal basis in the co-domain, and Σ describes how much the vectors in V are stretched to give the vectors in U.)

如何获得奇异值分解?( How do we find the singular decomposition? )

事实上我们可以找到任何矩阵的奇异值分解,那么我们是如何做到的呢?假设在原始域中有一个单位圆,如下图所示。经过 M 矩阵变换以后在co-domain中单位圆会变成一个椭圆,它的长轴(Mv1)和短轴(Mv2)分别对应转换后的两个标准正交向量,也是在椭圆范围内最长和最短的两个向量。

换句话说,定义在单位圆上的函数|Mx|分别在v1v2方向上取得最大和最小值。这样我们就把寻找矩阵的奇异值分解过程缩小到了优化函数|Mx|上了。结果发现(具体的推到过程这里就不详细介绍了)这个函数取得最优值的向量分别是矩阵 MT M 的特征向量。由于MTM是对称矩阵,因此不同特征值对应的特征向量都是互相正交的,我们用vi 表示MTM的所有特征向量。奇异值σi = |Mvi| , 向量 u为 Mvi 方向上的单位向量。但为什么ui也是正交的呢?

推倒如下:

σi 和 σj分别是不同两个奇异值

Mvi = σiui 
Mvj = σjuj.

我们先看下MviMvj,并假设它们分别对应的奇异值都不为零。一方面这个表达的值为0,推到如下

Mvi Mvj = viTMT Mvj = vi MTMvj = λjvi vj = 0

另一方面,我们有

Mvi Mvj = σiσj ui uj = 0

因此,ui 和 uj是正交的。但实际上,这并非是求解奇异值的方法,效率会非常低。这里也主要不是讨论如何求解奇异值,为了演示方便,采用的都是二阶矩阵。

应用实例(Another example)

现在我们来看几个实例。

实例一

经过这个矩阵变换后的效果如下图所示

在这个例子中,第二个奇异值为 0,因此经过变换后只有一个方向上有表达。

M = u1σ1 v1T.

换句话说,如果某些奇异值非常小的话,其相对应的几项就可以不同出现在矩阵 M 的分解式中。因此,我们可以看到矩阵 M 的秩的大小等于非零奇异值的个数。

实例二

我们来看一个奇异值分解在数据表达上的应用。假设我们有如下的一张 15 x 25 的图像数据。

如图所示,该图像主要由下面三部分构成。

我们将图像表示成 15 x 25 的矩阵,矩阵的元素对应着图像的不同像素,如果像素是白色的话,就取 1,黑色的就取 0. 我们得到了一个具有375个元素的矩阵,如下图所示

如果我们对矩阵M进行奇异值分解以后,得到奇异值分别是

σ1 = 14.72 
σ2 = 5.22 
σ3 = 3.31

矩阵M就可以表示成

M=u1σ1 v1T + u2σ2 v2T + u3σ3 v3T

vi具有15个元素,ui 具有25个元素,σi 对应不同的奇异值。如上图所示,我们就可以用123个元素来表示具有375个元素的图像数据了。

实例三

减噪(noise reduction)

前面的例子的奇异值都不为零,或者都还算比较大,下面我们来探索一下拥有零或者非常小的奇异值的情况。通常来讲,大的奇异值对应的部分会包含更多的信息。比如,我们有一张扫描的,带有噪声的图像,如下图所示

我们采用跟实例二相同的处理方式处理该扫描图像。得到图像矩阵的奇异值:

σ1 = 14.15 
σ2 = 4.67 
σ3 = 3.00 
σ4 = 0.21 
σ5 = 0.19 
... 
σ15 = 0.05

很明显,前面三个奇异值远远比后面的奇异值要大,这样矩阵 M 的分解方式就可以如下:

M  u1σ1 v1T + u2σ2 v2T + u3σ3 v3T

经过奇异值分解后,我们得到了一张降噪后的图像。

实例四

数据分析(data analysis)

我们搜集的数据中总是存在噪声:无论采用的设备多精密,方法有多好,总是会存在一些误差的。如果你们还记得上文提到的,大的奇异值对应了矩阵中的主要信息的话,运用SVD进行数据分析,提取其中的主要部分的话,还是相当合理的。

作为例子,假如我们搜集的数据如下所示:

我们将数据用矩阵的形式表示:

经过奇异值分解后,得到

σ1 = 6.04 
σ2 = 0.22

由于第一个奇异值远比第二个要大,数据中有包含一些噪声,第二个奇异值在原始矩阵分解相对应的部分可以忽略。经过SVD分解后,保留了主要样本点如图所示

就保留主要样本数据来看,该过程跟PCA( principal component analysis)技术有一些联系,PCA也使用了SVD去检测数据间依赖和冗余信息.

总结(Summary)

这篇文章非常的清晰的讲解了SVD的几何意义,不仅从数学的角度,还联系了几个应用实例形象的论述了SVD是如何发现数据中主要信息的。在netflix prize中许多团队都运用了矩阵分解的技术,该技术就来源于SVD的分解思想,矩阵分解算是SVD的变形,但思想还是一致的。之前算是能够运用矩阵分解技术于个性化推荐系统中,但理解起来不够直观,阅读原文后醍醐灌顶,我想就从SVD能够发现数据中的主要信息的思路,就几个方面去思考下如何利用数据中所蕴含的潜在关系去探索个性化推荐系统。也希望路过的各位大侠不吝分享呀。

References:

Gilbert Strang, Linear Algebra and Its Applications. Brooks Cole

William H. Press et alNumercial Recipes in C: The Art of Scientific Computing. Cambridge University Press.

Dan Kalman, A Singularly Valuable Decomposition: The SVD of a Matrix, The College Mathematics Journal 27 (1996), 2-23.

If You Liked This, You‘re Sure to Love ThatThe New York Times, November 21, 2008.

时间: 2024-10-12 08:11:16

奇异值分解(SVD) --- 几何意义的相关文章

奇异值分解(SVD) --- 几何意义 (转载)

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理 解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 关于线性变换部分的一些知识可以猛戳这里  奇异值分解(S

[机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value decomposition),翻译成中文就是奇异值分解.SVD的用处有很多,比如:LSA(隐性语义分析).推荐系统.特征压缩(或称数据降维).SVD可以理解为:将一个比较复杂的矩阵用更小更简单的3个子矩阵的相乘来表示,这3个小矩阵描述了大矩阵重要的特性. 1.1奇异值分解的几何意义(因公式输入比较麻烦

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计

奇异值分解(SVD)

特征值分解是利用矩阵的对角化来完成的:A=Q∧Q-1,但这种分解方法需要满足一个前提条件,即A是方阵. 奇异值分解(SVD)可以对m x n的矩阵进行分解.我们希望找到一个n x n的正交方阵V.一个m x m的正交方阵U和一个m x n的矩阵∑,使得A满足式子AV=U∑.因为V是正交矩阵,所以V是可逆,且V-1=VT,所以AV=U∑又可以写成A=U∑VT.下面分两步来找到V和U. 1)注意到ATA是一个对称方阵,如果存在一个n x n的正交方阵V.一个m x m的正交方阵U和一个m x n的矩

奇异值分解(SVD)原理详解及推导

声明:转自http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD原理梳理一下. SVD不

用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)

用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题. GSL 里是有最小二乘法拟合(Least-Squares Fitting)的相关算法,这些算法的声明在 gsl_fit.h 中,所以直接用 GSL 提供的 gsl_fit_linear 函数就能解决这个问题.不过我想顺便多学习一些有关 SVD 的知识.所以就没直接使用 gsl_fit_linear 函数. SVD

【简化数据】奇异值分解(SVD)

[简化数据]奇异值分解(SVD) @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/42214205 1.简介 奇异值分解(singular Value Decomposition),简称SVD,线性代数中矩阵分解的方法.假如有一个矩阵A,对它进行奇异值分解,可以得到三个矩阵: 这三个矩阵的大小: 矩阵sigma(即上图U和V中间的矩阵)除了对角元素不为0,其他元素都为0,并且对角元素是从大到小排列的,前面的元

机器学习——降维(主成分分析PCA、线性判别分析LDA、奇异值分解SVD、局部线性嵌入LLE)

机器学习--降维(主成分分析PCA.线性判别分析LDA.奇异值分解SVD.局部线性嵌入LLE) 以下资料并非本人原创,因为觉得石头写的好,所以才转发备忘 (主成分分析(PCA)原理总结)[https://mp.weixin.qq.com/s/XuXK4inb9Yi-4ELCe_i0EA] 来源:?石头?机器学习算法那些事?3月1日 主成分分析(Principal components analysis,以下简称PCA)是最常用的降维方法之一,在数据压缩和消除冗余方面具有广泛的应用,本文由浅入深的

paper 128:奇异值分解(SVD) --- 线性变换几何意义[转]

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 简介 SVD实际上是数学专业内容,但它现在已经渗入到不同的领