【BZOJ3997】[TJOI2015]组合数学 最长反链

【BZOJ3997】[TJOI2015]组合数学

Description

给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走。问至少走多少次才能将财宝捡完。此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完。

Input

第一行为正整数T,代表数据组数。

每组数据第一行为正整数N,M代表网格图有N行M列,接下来N行每行M个非负整数,表示此格子中财宝数量,0代表没有

Output

输出一个整数,表示至少要走多少次。

Sample Input

1
3 3
0 1 5
5 0 0
1 0 0

Sample Output

10

HINT

N<=1000,M<=1000.每个格子中财宝数不超过10^6

题解:丧病结论题,拓扑图的最小链覆盖=最长反链。

于是n^2DP求出最长反链就行了。

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
int n,m;
int v[1010][1010],f[1010][1010];

inline int rd()
{
	int ret=0,f=1;	char gc=getchar();
	while(gc<‘0‘||gc>‘9‘)	{if(gc==‘-‘)f=-f;	gc=getchar();}
	while(gc>=‘0‘&&gc<=‘9‘)	ret=ret*10+gc-‘0‘,gc=getchar();
	return ret*f;
}
void work()
{
	n=rd(),m=rd();
	int i,j;
	for(i=1;i<=n;i++)	for(j=1;j<=m;j++)	v[i][j]=rd();
	memset(f,0,sizeof(f));
	for(j=m;j>=1;j--)
	{
		for(i=1;i<=n;i++)
		{
			f[i][j]=max(max(f[i-1][j],f[i][j+1]),f[i-1][j+1]+v[i][j]);
		}
	}
	printf("%d\n",f[n][1]);
}
int main()
{
	int T=rd();
	while(T--)	work();
	return 0;
}
时间: 2024-12-17 22:35:10

【BZOJ3997】[TJOI2015]组合数学 最长反链的相关文章

bzoj3997 [TJOI2015]组合数学

3997: [TJOI2015]组合数学 Time Limit: 20 Sec  Memory Limit: 128 MB Description 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完. Input 第一行为正整数T,代表数据组数. 每组数据第一行为正整数N,M代表网格图有N行M列,接下来N行每行M个非负整数,表示此格子

BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】

题目 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完. 输入格式 第一行为正整数T,代表数据组数. 每组数据第一行为正整数N,M代表网格图有N行M列,接下来N行每行M个非负整数,表示此格子中财宝数量,0代表没有 输出格式 输出一个整数,表示至少要走多少次. 输入样例 1 3 3 0 1 5 5 0 0 1 0 0 输出样例 10

bzoj 3997: [TJOI2015]组合数学

3997: [TJOI2015]组合数学 Description 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完. Input 第一行为正整数T,代表数据组数. 每组数据第一行为正整数N,M代表网格图有N行M列,接下来N行每行M个非负整数,表示此格子中财宝数量,0代表没有 Output 输出一个整数,表示至少要走多少次. Samp

P3974 [TJOI2015]组合数学

P3974 [TJOI2015]组合数学 题目描述 为了提高智商,ZJY开始学习组合数学.某一天她解决了这样一个问题:给一个网格图,其中某些格子有财宝.每次从左上角出发,只能往右或下走.问至少要走几次才可能把财宝全捡完. 但是她还不知足,想到了这个问题的一个变形:假设每个格子中有好多块财宝,而每一次经过一个格子至多只能捡走一块财宝,其他条件不变,至少要走几次才可能把财宝全捡完? 这次她不会做了,你能帮帮她吗? 输入输出格式 输入格式: 第一行为一个正整数t,表示数据组数 每组数据的第一行是两个正

BZOJ 1143: [CTSC2008]祭祀river 最长反链

1143: [CTSC2008]祭祀river Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1143 Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河道连接着两个岔口,并且水在河道内按照一个固定

BZOJ 2718: [Violet 4]毕业旅行( 最长反链 )

一不小心速度就成了#1.... 这道题显然是求最长反链, 最长反链=最小链覆盖.最小链覆盖就是先做一次floyd传递闭包, 再求最小路径覆盖. 最小路径覆盖=N - 二分图最大匹配. 所以把所有点拆成x,y两个, 然后存在edge(u,v)就连ux->vy. 然后跑匈牙利即可. ------------------------------------------------------------------ #include<bits/stdc++.h> using namespace

BZOJ 3997 [TJOI2015]组合数学(单调DP)

[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3997 [题目大意] 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走. 问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝, 而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完. [题解] 最小链覆盖=最长反链,反链的意思就是该集合中的点相互之间不互达, 在该题中,最长反链可以用dp得出. [代码] #include <c

[BZOJ 1143] [CTSC2008] 祭祀river 【最长反链】

题目链接:BZOJ - 1143 题目分析 这道题在BZOJ上只要求输出可选的最多的祭祀地点个数,是一道求最长反链长度的裸题. 下面给出一些相关知识: 在有向无环图中,有如下的一些定义和性质: 链:一条链是一些点的集合,链上任意两个点x, y,满足要么 x 能到达 y ,要么 y 能到达 x . 反链:一条反链是一些点的集合,链上任意两个点x, y,满足 x 不能到达 y,且 y 也不能到达 x. 那么很显然这道题就是求最长反链长度了. 一个定理:最长反链长度 = 最小链覆盖(用最少的链覆盖所有

【BZOJ 3997】 3997: [TJOI2015]组合数学 (DP| 最小链覆盖=最大点独立集)

3997: [TJOI2015]组合数学 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 919  Solved: 664 Description 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完. Input 第一行为正整数T,代表数据组数. 每组数据第一行为正整数N,M代表网格图有