图像识别基本理论

1、图像识别基本流程

2、数字图像处理

一幅图像可以用一个二维函数来表示

I = f(x,y)  x,y代表图像平面的坐标,I代表亮度值,当x,y,I连续时为模拟图像,反之为数字图像;

现代信息理论将图像看做二维信号,按照数字信号理论,数字图像处理可以分为空域处理和频域处理;

空域处理的对象是信号本身f(x,y),比如几何变换、卷积、形态学等处理;

频域处理是对信号f(x,y)变换到频域函数F(u,v),或称信号的频谱函数,再对F(u,v)进行处理;常见的有傅里叶变换、沃尔什变换、K-L变换、小波变换等。

依照功能和目的不同,数字图像处理可分为以下几类:

(1)图像增强       突出图像的特征信息,去除或削弱不需要的信息

(2)图像的复原      去噪声

(3)图像的压缩与编码   信息论的编码技术削减图像的冗余信息和人视觉不敏感的信息

(4)图像重建       根据非可见光探测信号,重建被探测目标图像

3、模式识别

按理论背景,模式识别分为以下四类:

(1)统计学模式识别

(2)句法结构模式识别

(3)模糊逻辑模式识别

(4)神经网络模式识别

时间: 2024-10-13 22:30:37

图像识别基本理论的相关文章

Opencv图像识别从零到精通(26)---分水岭

分水岭是区域分割三个方法的最后一个,对于前景背景的分割有不错的效果. 分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭.分水岭的概念和形成可以通过模拟浸入过程来说明.在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭. 分水岭

深度学习在图像识别中的研究进展与展望

深度学习在图像识别中的研究进展与展望 深度学习是近十年来人工智能领域取得的最重要的突破之一.它在语音识别.自然语言处理.计算机视觉.图像与视频分析.多媒体等诸多领域都取得了巨大成功.本文将重点介绍深度学习在物体识别.物体检测.视频分析的最新研究进展,并探讨其发展趋势. 1.深度学习发展历史的回顾 现在的深度学习模型属于神经网络.神经网络的历史可以追溯到上世纪四十年代,曾经在八九十年代流行.神经网络试图通过大脑认知的机理,解决各种机器学习的问题.1986年Rumelhart.Hinton和Will

ML(1): 入门理论

机器学习相关的文章太多,选取一篇本人认为最赞的,copy文章中部分经典供自己学习,摘抄至 http://www.cnblogs.com/subconscious/p/4107357.html#first  示例入门 传统上如果我们想让计算机工作,我们给它一串指令,然后它遵照这个指令一步步执行下去.有因有果,非常明确.但这样的方式在机器学习中行不通.机器学习根本不接受你输入的指令,相反,它接受你输入的数据! 也就是说,机器学习是一种让计算机利用数据而不是指令来进行各种工作的方法.这听起来非常不可思

Opencv图像识别从零到精通(28)----Kmeans

K-means算法算是个著名的聚类算法了,不仅容易实现,并且效果也不错,训练过程不需人工干预,实乃模式识别等领域的居家必备良品啊,今天就拿这个算法练练手.属于无监督学习中间接聚类方法中的动态聚类 流程: 1.随机选取样本中的K个点作为聚类中心 2.计算所有样本到各个聚类中心的距离,将每个样本规划在最近的聚类中 3.计算每个聚类中所有样本的中心,并将新的中心代替原来的中心 4.检查新老聚类中心的距离,如果距离超过规定的阈值,则重复2-4,直到小于阈值 聚类属于无监督学习,以往的回归.朴素贝叶斯.S

图像识别中的深度学习 转

转:http://mp.weixin.qq.com/s?__biz=MzAwNDExMTQwNQ==&mid=209152042&idx=1&sn=fa0053e66cad3d2f7b107479014d4478#rd#opennewwindow 1.深度学习发展历史 深度学习是近十年来人工智能领域取得的重要突破.它在语音识别.自然语言处理.计算机视觉.图像与视频分析.多媒体等诸多领域的应用取得了巨大成功.现有的深度学习模型属于神经网络.神经网络的起源可追溯到20世纪40年代,曾经

【王晓刚】深度学习在图像识别中的研究进展与展望

深度学习是近十年来人工智能领域取得的最重要的突破之一.它在语音识别.自然语言处理.计算机视觉.图像与视频分析.多媒体等诸多领域都取得了巨大成功.本文将重点介绍深度学习在物体识别.物体检测.视频分析的最新研究进展,并探讨其发展趋势. 1. 深度学习发展历史的回顾 现有的深度学习模型属于神经网络.神经网络的历史可追述到上世纪四十年代,曾经在八九十年代流行.神经网络试图通过模拟大脑认知的机理,解决各种机器学习的问题.1986 年Rumelhart,Hinton 和Williams 在<自然>发表了著

Opencv图像识别从零到精通(34)---SIFI

   一.理论知识 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,对于算法的理论介绍,可以参考这篇文章http://blog.csdn.net/qq_20823641/article/details/51692415,里面很详细,可以更好的学习.这里就不多介绍.后面就挑选重点的来说 二.SIFT 主要思想 SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量. 三.SIFT算法的主要特点: a) SIFT特征是图像

[Tesseract]图像识别

图像识别涉及的理论:傅里叶变换,图形形态学,滤波,矩阵变换等等. Tesseract的出现为了解决在没有这些复杂的理论基础,快速识别图像的框架. 准备: 1.样本图像学习,预处理 (平均每1个元素出现20次) 2.学习,初步识别 3.校正学习库 测试: 1.待识别图像,预处理 2.根据学习库 识别 例子1:图片反色 1 private static void Reverse(string fileName,string outName) 2 { 3 using (var pic = Image.

初识机器学习-理论篇(慕课笔记)

什么是机器学习 定义: 利用计算机从历史数据中找出规律,并把这些规律用到对未来不确定场景的决策. 从数据中寻找规律 寻找规律:概率学 统计学统计学方法:抽样 -> 统计 -> 假设检验随着计算机处理能力增强 -> 不需要采样数据增加 -> 维度增加 -> 无法可视化 -> 只能数学方式表示 我们进行机器学习的一个目的就是从大量的数据中归纳出一个合适的数学模型 机器学习发展的原动力 大数据概念的出现 用数据代替专家经济驱动,数据变现 业务系统发展的历史 基于专家经验(头脑