Android SurfaceFlinger服务(八) ----- 图像的输出

SurfaceFlinger合成后就进行图像的输出的工作。在图像输出时,存在硬件合成器与不存在的情况有些差别。软件合成时用到图像缓冲区生产者与消费者模型。首先来看看图像缓冲区的初始化。

void SurfaceFlinger::init() {
    ALOGI(  "SurfaceFlinger‘s main thread ready to run. "
            "Initializing graphics H/W...");

    ......

    // initialize our non-virtual displays
    for (size_t i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
        DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
        // set-up the displays that are already connected
        if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
            // All non-virtual displays are currently considered secure.
            bool isSecure = true;
            createBuiltinDisplayLocked(type);
            wp<IBinder> token = mBuiltinDisplays[i];

            sp<IGraphicBufferProducer> producer;
            sp<IGraphicBufferConsumer> consumer;
            BufferQueue::createBufferQueue(&producer, &consumer,
                    new GraphicBufferAlloc());

            sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, i,
                    consumer);
            int32_t hwcId = allocateHwcDisplayId(type);
            sp<DisplayDevice> hw = new DisplayDevice(this,
                    type, hwcId, mHwc->getFormat(hwcId), isSecure, token,
                    fbs, producer,
                    mRenderEngine->getEGLConfig());
            if (i > DisplayDevice::DISPLAY_PRIMARY) {
                // FIXME: currently we don‘t get blank/unblank requests
                // for displays other than the main display, so we always
                // assume a connected display is unblanked.
                ALOGD("marking display %zu as acquired/unblanked", i);
                hw->setPowerMode(HWC_POWER_MODE_NORMAL);
            }
            mDisplays.add(token, hw);
        }
    }

   ......
}
  • 调用BufferQueue::createBufferQueue创建图像缓冲区,并得到其生产者和消费者接口
  • 利用上面得到的consumer消费者接口创建FramebufferSurface
  • 利用上面得到的producer生产者接口创建DisplayDevice
  • DisplayDevice软件合成的图像在FramebufferSurface中得以消费处理
DisplayDevice::DisplayDevice(
        const sp<SurfaceFlinger>& flinger,
        DisplayType type,
        int32_t hwcId,
        int format,
        bool isSecure,
        const wp<IBinder>& displayToken,
        const sp<DisplaySurface>& displaySurface,
        const sp<IGraphicBufferProducer>& producer,
        EGLConfig config)
    : lastCompositionHadVisibleLayers(false),
      mFlinger(flinger),
      mType(type), mHwcDisplayId(hwcId),
      mDisplayToken(displayToken),
      mDisplaySurface(displaySurface),
      mDisplay(EGL_NO_DISPLAY),
      mSurface(EGL_NO_SURFACE),
      mDisplayWidth(), mDisplayHeight(), mFormat(),
      mFlags(),
      mPageFlipCount(),
      mIsSecure(isSecure),
      mSecureLayerVisible(false),
      mLayerStack(NO_LAYER_STACK),
      mOrientation(),
      mPowerMode(HWC_POWER_MODE_OFF),
      mActiveConfig(0)
{
    mNativeWindow = new Surface(producer, false);
    ANativeWindow* const window = mNativeWindow.get();

    /*
     * Create our display‘s surface
     */

    EGLSurface surface;
    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
    if (config == EGL_NO_CONFIG) {
        config = RenderEngine::chooseEglConfig(display, format);
    }
    surface = eglCreateWindowSurface(display, config, window, NULL);
    eglQuerySurface(display, surface, EGL_WIDTH,  &mDisplayWidth);
    eglQuerySurface(display, surface, EGL_HEIGHT, &mDisplayHeight);

    // Make sure that composition can never be stalled by a virtual display
    // consumer that isn‘t processing buffers fast enough. We have to do this
    // in two places:
    // * Here, in case the display is composed entirely by HWC.
    // * In makeCurrent(), using eglSwapInterval. Some EGL drivers set the
    //   window‘s swap interval in eglMakeCurrent, so they‘ll override the
    //   interval we set here.
    if (mType >= DisplayDevice::DISPLAY_VIRTUAL)
        window->setSwapInterval(window, 0);

    mConfig = config;
    mDisplay = display;
    mSurface = surface;
    mFormat  = format;
    mPageFlipCount = 0;
    mViewport.makeInvalid();
    mFrame.makeInvalid();

    // virtual displays are always considered enabled
    mPowerMode = (mType >= DisplayDevice::DISPLAY_VIRTUAL) ?
                  HWC_POWER_MODE_NORMAL : HWC_POWER_MODE_OFF;

    // Name the display.  The name will be replaced shortly if the display
    // was created with createDisplay().
    switch (mType) {
        case DISPLAY_PRIMARY:
            mDisplayName = "Built-in Screen";
            break;
        case DISPLAY_EXTERNAL:
            mDisplayName = "HDMI Screen";
            break;
        default:
            mDisplayName = "Virtual Screen";    // e.g. Overlay #n
            break;
    }

    // initialize the display orientation transform.
    setProjection(DisplayState::eOrientationDefault, mViewport, mFrame);
}
  • 使用生产者接口初始化egl图形库
  • 软件绘制图层时就会调用EGL图形库,间接调用生产者接口

在SurfaceFlinger::doDisplayComposition函数中调用doComposeSurfaces函数合成图层,然后调用hw->swapBuffers。对于没有HWComper存在时,直接提交显示。若存在HWComper时,将软件合成的图层交由HWComper处理。

void DisplayDevice::swapBuffers(HWComposer& hwc) const {
    // We need to call eglSwapBuffers() if:
    //  (1) we don‘t have a hardware composer, or
    //  (2) we did GLES composition this frame, and either
    //    (a) we have framebuffer target support (not present on legacy
    //        devices, where HWComposer::commit() handles things); or
    //    (b) this is a virtual display
    if (hwc.initCheck() != NO_ERROR ||
            (hwc.hasGlesComposition(mHwcDisplayId) &&
             (hwc.supportsFramebufferTarget() || mType >= DISPLAY_VIRTUAL))) {
        EGLBoolean success = eglSwapBuffers(mDisplay, mSurface);
        if (!success) {
            EGLint error = eglGetError();
            if (error == EGL_CONTEXT_LOST ||
                    mType == DisplayDevice::DISPLAY_PRIMARY) {
                LOG_ALWAYS_FATAL("eglSwapBuffers(%p, %p) failed with 0x%08x",
                        mDisplay, mSurface, error);
            } else {
                ALOGE("eglSwapBuffers(%p, %p) failed with 0x%08x",
                        mDisplay, mSurface, error);
            }
        }
    }  

    status_t result = mDisplaySurface->advanceFrame();
    if (result != NO_ERROR) {
        ALOGE("[%s] failed pushing new frame to HWC: %d",
                mDisplayName.string(), result);
    }
}
  • 在不存在HWComposer或存在HWComposer但使用gles合成时调用eglSwapBuffers提交gles合成的缓冲区
  • 其它情况对图层合层不作处理

eglSwapBuffers提交gles合成的缓冲区后交由图层消费者去处理,前文中提到消费者是FramebufferSurface。看看其处理函数:

void FramebufferSurface::onFrameAvailable(const BufferItem& /* item */) {
    sp<GraphicBuffer> buf;
    sp<Fence> acquireFence;
    status_t err = nextBuffer(buf, acquireFence);
    if (err != NO_ERROR) {
        ALOGE("error latching nnext FramebufferSurface buffer: %s (%d)",
                strerror(-err), err);
        return;
    }
    err = mHwc.fbPost(mDisplayType, acquireFence, buf);
    if (err != NO_ERROR) {
        ALOGE("error posting framebuffer: %d", err);
    }
}
  • 调用mHwc.fbPost提交buffer到HWComposer函数
int HWComposer::fbPost(int32_t id,
        const sp<Fence>& acquireFence, const sp<GraphicBuffer>& buffer) {
    if (mHwc && hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
        return setFramebufferTarget(id, acquireFence, buffer);
    } else {
        acquireFence->waitForever("HWComposer::fbPost");
        return mFbDev->post(mFbDev, buffer->handle);
    }
}
  • 存在硬件合成器时,调用setFramebufferTarget函数将软件合成的结果提交给硬件合成器去混合图层输出
  • 不存在硬件合成器时,直接调用mFbDev->post将软件合成的结果提交到framebuffer进去输出

在SurfaceFlinger中执行完doDisplayComposition进行图层处理后会调用postFramebuffer提交图层到HWComposer中。

void SurfaceFlinger::postFramebuffer()
{
    ATRACE_CALL();

    ......

    HWComposer& hwc(getHwComposer());
    if (hwc.initCheck() == NO_ERROR) {
        if (!hwc.supportsFramebufferTarget()) {
            // EGL spec says:
            //   "surface must be bound to the calling thread‘s current context,
            //    for the current rendering API."
            getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext);
        }
        hwc.commit();
    }  

    ......
}
  • 存在HWComposer时调用hwc.commit()提交图层。
status_t HWComposer::commit() {
    int err = NO_ERROR;
    if (mHwc) {
        if (!hwcHasApiVersion(mHwc, HWC_DEVICE_API_VERSION_1_1)) {
            // On version 1.0, the OpenGL ES target surface is communicated
            // by the (dpy, sur) fields and we are guaranteed to have only
            // a single display.
            mLists[0]->dpy = eglGetCurrentDisplay();
            mLists[0]->sur = eglGetCurrentSurface(EGL_DRAW);
        }

        for (size_t i=VIRTUAL_DISPLAY_ID_BASE; i<mNumDisplays; i++) {
            DisplayData& disp(mDisplayData[i]);
            if (disp.outbufHandle) {
                mLists[i]->outbuf = disp.outbufHandle;
                mLists[i]->outbufAcquireFenceFd =
                        disp.outbufAcquireFence->dup();
            }
        }

        err = mHwc->set(mHwc, mNumDisplays, mLists);

        for (size_t i=0 ; i<mNumDisplays ; i++) {
            DisplayData& disp(mDisplayData[i]);
            disp.lastDisplayFence = disp.lastRetireFence;
            disp.lastRetireFence = Fence::NO_FENCE;
            if (disp.list) {
                if (disp.list->retireFenceFd != -1) {
                    disp.lastRetireFence = new Fence(disp.list->retireFenceFd);
                    disp.list->retireFenceFd = -1;
                }
                disp.list->flags &= ~HWC_GEOMETRY_CHANGED;
            }
        }
    }
    return (status_t)err;
}
  • 调用mHwc->set使用硬件对层图进行合成并输出到显示设备

原文地址:https://www.cnblogs.com/qzhang1535/p/9359056.html

时间: 2024-08-30 04:05:18

Android SurfaceFlinger服务(八) ----- 图像的输出的相关文章

Android SurfaceFlinger服务(三) ----- 本地图层Layer创建

在上一篇文章中,主要分析了Surface的创建过程,对于Layer图层的创建并没有深入跟踪分析.这篇文章将分析Layer图层的创建,并分析handle gbp这两个变量的来源. 在SurfaceFlinger中会根据flags的值创建不同的layer.这里主要以创建普通layer为例进行分析. status_t SurfaceFlinger::createNormalLayer(const sp<Client>& client, const String8& name, uin

Android Surfaceflinger服务(一) ----- BufferQueue分析

生产者和消费者模型是编程中运用比较广泛的模型.在SurfaceFlinger图像绘制.合成.显示也用到了该模型.利用该模型合理的管理图像缓冲区buffer.让整个android系统从绘制到显示的过程有条不紊的进行. BufferQueue图像缓冲管理者.其成员函数createBufferQueue创建一个缓冲区队列. void BufferQueue::createBufferQueue(sp<IGraphicBufferProducer>* outProducer, sp<IGraph

Android SurfaceFlinger服务(六) ----- VSync信号的分发

HWComposer模块产生VSync信号后要经过分发才能送达到关心VSync事件的模块中去.VSync信号分发大致流程为HWComposer->SurfaceFlinger->DispSync->DispSyncSource->各个具体模块.下面具体分析下这个流程. 在上一篇文章中分析到硬件或者软件VSync信号产生时,会回调SurfaceFlinger的onVSyncReceived函数,来看看这个函数: void SurfaceFlinger::onVSyncReceived

Android系统Surface机制的SurfaceFlinger服务渲染应用程序UI的过程分析

文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/8079456 在前面的一系列文章中,我们学习了Android应用程序与SurfaceFlinger服务的关系,以及SurfaceFlinger服务的启动过程.初始化硬件帧缓冲区的过程.线程模型.SurfaceFlinger服务所做的一切都是为了给Android应用程序提服务的,即为Android应用程序渲染它们的UI.在本文中,我们就详细分析Su

Android应用程序请求SurfaceFlinger服务渲染Surface的过程分析

文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/7932268 在前面一篇文章中,我们分析了Android应用程序请求SurfaceFlinger服务创建Surface的过程.有了Surface之后,Android应用程序就可以在上面绘制自己的UI了,接着再请求SurfaceFlinger服务将这个已经绘制好了UI的Surface渲染到设备显示屏上去.在本文中,我们就将详细分析Android应用

Android系统Surface机制的SurfaceFlinger服务对帧缓冲区(Frame Buffer)的管理分析

文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/8046659 在前文中,我们分析了SurfaceFlinger服务的启动过程.SurfaceFlinger服务在启动的过程中,会对系统的硬件帧缓冲区进行初始化.由于系统的硬件帧缓冲区一般只有一个,并且不是谁都可以随便访问的,因此,它就需要由一个服务来统一管理.在Android系统中,这个服务便是SurfaceFlinger.在本文中,我们就详细分

Android应用程序与SurfaceFlinger服务之间的共享UI元数据(SharedClient)的创建过程分析 .

引自:http://blog.csdn.net/luoshengyang/article/details/7867340 在前面一篇文章中,我们分析了Android应用程序与SurfaceFlinger服务的连接过程.Android应用程序成功连接上SurfaceFlinger服务之后,还需要一块匿名共享内存来和SurfaceFlinger服务共享它的UI元数据, 以便使得SurfaceFlinger服务可以正确地为它创建以及渲染Surface.在本文中,我们将详细地分析这块用来保存UI元数据的

Android应用程序与SurfaceFlinger服务的连接过程分析

转自:http://blog.csdn.net/luoshengyang/article/details/7857163 前文在描述Android应用程序和SurfaceFlinger服务的关系时提到,每一个有UI的Android应用程序都需要与SurfaceFlinger服务建立一个连接,以便可以通过这个连接来请求SurfaceFlinger服务为它创建和渲染Surface. 在本文中,我们将以Android系统的开机动画应用程序为例,详细描述Android应用程序是如何与SurfaceFli

Android应用程序与SurfaceFlinger服务的关系概述和学习计划 .

转自:http://blog.csdn.net/luoshengyang/article/details/7846923 SurfaceFlinger服务:负责绘制Android应用程序的UI, SurfaceFlinger服务运行在Android系统的System进程中,它负责管理Android系统的帧缓冲区(Frame Buffer).Android系统的帧缓冲区的相关知识, Android应用程序为了能够将自己的UI绘制在系统的帧缓冲区上,它们就必须要与SurfaceFlinger服务进行