在光线追踪中,我们常常要处理对于Mesh的渲染,由于Mesh一般由一个个三角形所构成,因此需要我们去计算光线和Mesh每个三角形之间是否存在交点。这可以看做是一个射线和三角形的求交问题。《Fundamentals of Computer Graphics (3rd edition)》中提出了一个in-place的算法,在这里予以介绍。
设光线的起点为e,方向为d,三角形三个顶点为a,b,c。那么可以得到:
e+td=a+β(b-a)+γ(c-a)
其中,β、γ为三角形的重心坐标。β+γ<1。那么可以得到以下公式:
将它化为线性方程组:
那么我们要求解的其实就是β、γ和t,接下来利用Cramer法则求解即可。
其中矩阵A为:
当|A|为0,或β+γ>1时,说明光线和该三角形不想交,否则可计算出交点p=e+td
原文地址:https://www.cnblogs.com/wickedpriest/p/9193314.html
时间: 2024-11-05 22:58:25