Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can be determined by a given pair of postorder and inorder traversal sequences. And it is a simple standard routine to print the numbers in level-order. However, if you think the problem is too simple, then you are too naive. This time you are supposed to print the numbers in "zigzagging order" -- that is, starting from the root, print the numbers level-by-level, alternating between left to right and right to left. For example, for the following tree you must output: 1 11 5 8 17 12 20 15.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<= 30), the total number of nodes in the binary tree. The second line gives the inorder sequence and the third line gives the postorder sequence. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the zigzagging sequence of the tree in a line. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
8
12 11 20 17 1 15 8 5
12 20 17 11 15 8 5 1
Sample Output:
1 11 5 8 17 12 20 15
题目大意:通过中序遍历和后序遍历构建一棵树, 并交替的输出层序遍历;思路:dfs()构建这棵树, levelOrder()交替的层序遍历这棵树; 用两个二维数组来记录层序遍历, level1记录从右到左边的遍历, level2用来记录从左到右的遍历 设置两个计数cnt1,cnt2来记录level1和了level2的位置注意点:应该对建立树的数组进行初始化,初始化为负数, 若不初始化, 默认值是1, 然而数组有下标是0,会导致第一位数不能遍历,导致错误
1 #include<iostream> 2 #include<vector> 3 #include<queue> 4 using namespace std; 5 vector<int> in(30), post(30), level1[30], level2[30]; 6 int v[30][2], root; 7 void dfs(int &index, int inl, int inr, int postl, int postr){ 8 int temp=post[postr], i=inl; 9 if(inl>inr) return; 10 index = postr; 11 while(i<=inr && in[i]!=temp) i++; 12 dfs(v[index][0], inl, i-1, postl, postl+(i-inl)-1); 13 dfs(v[index][1], i+1, inr, postl+i-inl, postr-1); 14 } 15 16 void levelOrder(){ 17 queue<int> q1, q2; 18 q1.push(root); 19 int cnt1=0, cnt2=0; 20 while(q1.size() || q2.size()){ 21 int temp, flag1=0, flag2=0; 22 while(q1.size()){ 23 temp=q1.front(); 24 q1.pop(); 25 level1[cnt1].push_back(post[temp]); 26 if(v[temp][0]!=-1) q2.push(v[temp][0]); 27 if(v[temp][1]!=-1) q2.push(v[temp][1]); 28 flag1=1; 29 } 30 if(flag1) cnt1++; 31 while(q2.size()){ 32 temp=q2.front(); 33 q2.pop(); 34 level2[cnt2].push_back(post[temp]); 35 if(v[temp][0]!=-1) q1.push(v[temp][0]); 36 if(v[temp][1]!=-1) q1.push(v[temp][1]); 37 flag2=1; 38 } 39 if(flag2) cnt2++; 40 } 41 } 42 int main(){ 43 int n, i, j; 44 cin>>n; 45 fill(v[0], v[0]+60, -1); 46 for(i=0; i<n; i++) cin>>in[i]; 47 for(i=0; i<n; i++) cin>>post[i]; 48 dfs(root, 0, n-1, 0, n-1); 49 levelOrder(); 50 cout<<level1[0][0]; 51 for(i=1; i<n; i++) 52 if(i%2==1) for(j=0; j<level2[i/2].size(); j++) cout<<" "<<level2[i/2][j]; 53 else for(j=level1[i/2].size()-1; j>=0; j--) cout<<" "<<level1[i/2][j]; 54 return 0; 55 }
原文地址:https://www.cnblogs.com/mr-stn/p/9214176.html