logistic原理与实践

逻辑回归模型是一种将影响概率的不同因素结合在一起的指数模型,得到的是0~1之间的概率分布.自变量范围是,值域范围限制在0~1之间.在搜索广告、信息处理和生物统计中有广泛的应用.例如搜索广告的点击率预估,将影响概率预测的各种信息作为变量,比如广告的位置、广告和搜索词的相关性、广告展示的时间(比如晚上广告的点击率会略高于下午)

优缺点:

优点:

1)容易使用和解释,实用价值高的常用市场预测方法;

2)它是直接对分类可能性建模,无需事先假设数据分布,这样就避免了假设分布不准确问题;

3)可以适用于连续性和类别性自变量;

缺点:

1)对模型中自变量多重共线性较为敏感,例如两个高度相关自变量同时放入模型,可能导致较弱的一个自变量回归符号不符合预期,符号被扭转.?需要利用因子分析或者变量聚类分析等手段来选择代表性的自变量,以减少候选变量之间的相关性;

2)预测结果呈“S”型,因此从log(odds)向概率转化的过程是非线性的,在两端随着?log(odds)值的变化,概率变化很小,边际值太小,slope太小,而中间概率的变化很大,很敏感.导致很多区间的变量变化对目标概率的影响没有区分度,无法确定阀值.

###########################R语言################################

index <- which(iris$Species == ‘setosa‘)

ir <- iris[- index,]

levels(ir$Species)[1] <- ‘‘

split <- sample(100,100*(2/3))

#生成训练集

ir_train <- ir[split,]

#生成测试集

ir_test <- ir[-split,]

fit <- glm(Species ~.,family=binomial(link=‘logit‘),data=ir_train)

summary(fit)

real <- ir_test$Species

predict <- predict(fit,type=‘response‘,newdata=ir_test)

data.frame(real,predict)

res <- data.frame(real,predict =ifelse(predict>0.5,‘virginca‘,‘versicorlor‘))

#查看模型效果

#################################Matlab#######################################

data = importdata(‘somelab.xlsx‘);
x(:,1:4) = data.data.Sheet1(:,1:4);
y(:,1) = data.data.Sheet1(:,7);
a =glmfit(x(1:80,1:4),y(1:80,1),‘binomial‘, ‘link‘, ‘logit‘);
logitFit = glmval(b,x(80:100,1:4), ‘logit‘);

###############################Weka##########################################

Funtion:

Logistic

SimpleLogistic

时间: 2025-01-13 23:30:21

logistic原理与实践的相关文章

深入理解FFM原理与实践

原文:http://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 深入理解FFM原理与实践 del2z, 大龙 ·2016-03-03 09:00 FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错的战绩.美团点评技术团队在搭建DSP的过程中,探索并使用了FM和FFM模型进行CTR和CVR

转:fastText原理及实践(达观数据王江)

http://www.52nlp.cn/fasttext 1条回复 本文首先会介绍一些预备知识,比如softmax.ngram等,然后简单介绍word2vec原理,之后来讲解fastText的原理,并着手使用keras搭建一个简单的fastText分类器,最后,我们会介绍fastText在达观数据的应用. NO.1预备知识1 Softmax回归 Softmax回归(Softmax Regression)又被称作多项逻辑回归(multinomial logistic regression),它是逻

分布式开放消息系统(RocketMQ)的原理与实践

分布式消息系统作为实现分布式系统可扩展.可伸缩性的关键组件,需要具有高吞吐量.高可用等特点.而谈到消息系统的设计,就回避不了两个问题: 消息的顺序问题 消息的重复问题 RocketMQ作为阿里开源的一款高性能.高吞吐量的消息中间件,它是怎样来解决这两个问题的?RocketMQ 有哪些关键特性?其实现原理是怎样的? 关键特性以及其实现原理 一.顺序消息 消息有序指的是可以按照消息的发送顺序来消费.例如:一笔订单产生了 3 条消息,分别是订单创建.订单付款.订单完成.消费时,要按照顺序依次消费才有意

Atitit 表达式原理 语法分析&#160;原理与实践 解析java的dsl &#160;递归下降是现阶段主流的语法分析方法

Atitit 表达式原理 语法分析 原理与实践 解析java的dsl  递归下降是现阶段主流的语法分析方法 于是我们可以把上面的语法改写成如下形式:1 合并前缀1 语法分析有自上而下和自下而上两种分析方法2 递归下降是现阶段主流的语法分析方法,2 于是我们可以把上面的语法改写成如下形式: 1)       Operator="+" | "-" | "*" | "/" 2)       Expression=<数字>

《从PAXOS到ZOOKEEPER分布式一致性原理与实践》pdf

下载地址:网盘下载 内容简介  · · · · · · <Paxos到Zookeeper:分布式一致性原理与实践>从分布式一致性的理论出发,向读者简要介绍几种典型的分布式一致性协议,以及解决分布式一致性问题的思路,其中重点讲解了Paxos和ZAB协议.同时,本书深入介绍了分布式一致性问题的工业解决方案--ZooKeeper,并着重向读者展示这一分布式协调框架的使用方法.内部实现及运维技巧,旨在帮助读者全面了解ZooKeeper,并更好地使用和运维ZooKeeper.全书共8章,分为五部分:第一

嵌入式实时操作系统μCOS原理与实践任务控制与时间的解析

/***********************************************************************************************************                                                uC/OS-II*                                          The Real-Time Kernel  RTOS* ***************

《数字图像处理原理与实践(MATLAB版)》一书之代码Part9

本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part9,辑录该书第431至第438页之代码,供有需要读者下载研究使用.至此全书代码发布已经接近尾声,希望这些源码能够对有需要的读者有所帮助.代码执行结果请参见原书配图,建议下载代码前阅读下文: 关于<数字图像处理原理与实践(MATLAB版)>一书代码发布的说明 http://blog.csdn.net/baimafujinji/article/details/40987807 首先给出的是原书P438所列之程序源

《数字图像处理原理与实践(MATLAB版)》一书之代码Part8

本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part8,辑录该书第375至第415页之代码,供有需要读者下载研究使用.至此全书代码发布已经接近尾声,希望这些源码能够对有需要的读者有所帮助.代码执行结果请参见原书配图,建议下载代码前阅读下文: 关于<数字图像处理原理与实践(MATLAB版)>一书代码发布的说明 http://blog.csdn.net/baimafujinji/article/details/40987807 P385-1 function y

20145309《网络对抗技术》免杀原理与实践

20145309<网络对抗技术>免杀原理与实践 1.基础问题回答 (1)杀软是如何检测出恶意代码的? 根据特征来检测:对已存在的流行代码特征的提取与比对根据行为来检测:是否有更改注册表行为.是否有设置自启动.是否有修改权限等等 (2)免杀是做什么? 使用一些方法使得恶意程序不被杀软和防火墙发现,避免被查杀. (3)免杀的基本方法有哪些? 加壳:就是相当于把你的后门代码封装起来,但是现在大部分公开的壳都能被杀毒软件查出来,所以加这些壳还不如不加:加花指令:就是加一段垃圾代码,但是并不影响程序的正