贪心算法的理解

  1. 什么是贪心算法?

    贪心算法从步步最优,到达全局最优。

  2. 什么时候能够使用贪心算法?

    一般来说,凡是经过数学归纳法证明可以采用贪心法的情况都应该采用它,因为它具有高效性。

    通常还有另外一个方法来判断,如果一个问题具有这两大性质,那么使用贪心法来对其求解总能求

    得最优解。

    1.最优子结构性质

    当一个问题的最优解一定包含其子问题的最优解时,称此问题具有最优子结构性质。如何理解?换句话说:最优解一定是子问题的最优解组合而成的。(这个好像是从后到前的看问题)。

    2.贪心选择性质

    贪心选择性质时指所求问题的整体最优解可以通过一系列局部最优的选择获得,即通过一系列的逐步局部最优选择使得问题最终的选择方案是全局最优的。(这个是从前往后看问题)

  3. 贪心算法解题步骤即算法设计模式

    利用贪心法求解问题的过程通常包含如下三个步骤:

    (1)分解:将原问题分解为若干个相互独立的阶段。

    (2)解决:对于每个阶段依据贪心策略进行贪心选择,求出局部的最优解。

    (3)合并:将各个阶段的解合并为原问题的一个可行解。

    Greedy(A,n)

    {

    //A[0:n-1]包含n个输入,即A是问题的输入集合

    将解集合solution初始为空

    for(int i=0;i<n;i++)

    {

    x=select(A);//依据贪心选择策略做贪心选择,求得局部最优解

    if(x可以包含在solution)//判断解集合solution在加入x后是否满足约束条件

    {

    solution=union(solution,x);//部分局部最优解进行合并

    }

    return ( 解向量 solution); //n个阶段完成后,得到原问题的最优解

    }

    示例如下:这里的A,可以作为要(10枚钱币中,选择最少的个数,来达到100元,A就是这些钱币集合)solution就是局部最优解。

时间: 2024-10-17 00:51:05

贪心算法的理解的相关文章

贪心算法-----单线程:活动安排问题 多线程:多机调度问题

一.贪心算法的特点 顾名思义,贪心算法总是做出在当前看来是最好的选择.虽然贪心算法并不从整体最优上加以考虑,它所做出的选择只是在某种意义上的局部最优选择. 贪心算法的优点是更简单,更直接且解题效率更高,即使贪心算法不能得到整体最优解,但其最终结果却是最优解的很好的近似解. 二.贪心算法的理解 由于涉及到在做出在当前看来最好的选择,所以会经常采用排序算法,推荐使用快速排序算法,复杂度是O(nlgn),且在同等复杂度算法中效率是最高的, 本文涉及的排序都采用冒泡排序,只是注明需要排序而已. 贪心算法

贪心算法+实例

贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说, 不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解.(官方解释). 所谓的贪心算法主要理解就在这个“贪心”上面,所谓贪心,就是找到最好的,也就是上面说的最优解. 我们可以通过各种方式找到当前的最优解,将最有解利用过后,将其清除,再去找下一个最优解. 来一个例子来说明. 题目描述 鲁宾逊先生有一只宠物猴,名叫多多.这天,他们两个正沿着乡间小路散步,突然发现路边的告示牌上贴着一张小小的纸条:“欢迎免费

动态规划和分治法,贪心算法以及递归的再一次深刻理解和体会

每次体会算法都有新的感觉,刷题越多,对算法的理解感觉也就越深刻. 下面我们来重新体会下分治法,动态规划,贪心法,递归的理解. 1.分治法: 将问题分成单独的阶段,每个阶段互相不干扰很独立,如10米长的木棍,切成10段,每段去解决每一段的问题.(阶段没有关系) 2.贪心法 站在全局的角度,也是将问题堪称分为多个阶段,只不过阶段和阶段之间有一定的递进关系,如从5毛,1元,2毛,1毛,2元中,去找最少的钱币构成10块钱.首先是站在全局的角度,先从中取其最大值,为第一阶段,然后在从剩余的当中在找最大值,

简单理解算法篇--贪心算法

贪心算法是什么意思?举个例子就很清楚了:现在你有一个能装4斤苹果的袋子,苹果有两种,一种3斤一个,一种2斤一个,怎么装才能得到最多苹果?当然我们人考虑的话当然是拿两个2斤的苹果,就刚好装满了,但是如果按贪心算法拿的话,首先就要把最重的苹果拿下(是不是很符合贪心两个字?),但并没有得到最多苹果. 贪心算法保证了局部最优,但并不能保证得到最优解. 什么时候用贪心法?满足下面两个条件 1.       具有最优子结构 2.       贪心选择性 第1点跟动态规划的条件一样,其实贪心跟动态规划一样,都

零基础学贪心算法

本文在写作过程中参考了大量资料,不能一一列举,还请见谅.贪心算法的定义:贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解.贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关.解题的一般步骤是:1.建立数学模型来描述问题:2.把求解的问题分成若干个子问题:3.对每一子问题求解,得到子问题的局部最优解:4.把子问题的局部最优

算法导论----贪心算法,删除k个数,使剩下的数字最小

先贴问题: 1个n位正整数a,删去其中的k位,得到一个新的正整数b,设计一个贪心算法,对给定的a和k得到最小的b: 一.我的想法:先看例子:a=5476579228:去掉4位,则位数n=10,k=4,要求的最小数字b是n-k=6位的: 1.先找最高位的数,因为是6位数字,所以最高位不可能在后5位上取到(因为数字的相对顺序是不能改变的,假设如果取了后五位中倒数第5位的7,则所求的b就不可能是6位的了,最多也就是4位的79228)理解这点很重要!所以问题变成从第1位到第k+1(n-(n-k-1))取

贪心算法(Greedy Algorithm)之最小生成树 克鲁斯卡尔算法(Kruskal&amp;#39;s algorithm)

克鲁斯卡尔算法(Kruskal's algorithm)是两个经典的最小生成树算法的较为简单理解的一个.这里面充分体现了贪心算法的精髓.大致的流程能够用一个图来表示.这里的图的选择借用了Wikipedia上的那个.很清晰且直观. 首先第一步,我们有一张图,有若干点和边 例如以下图所看到的: 第一步我们要做的事情就是将全部的边的长度排序,用排序的结果作为我们选择边的根据.这里再次体现了贪心算法的思想.资源排序,对局部最优的资源进行选择. 排序完毕后,我们领先选择了边AD. 这样我们的图就变成了 第

五大算法思想—贪心算法

贪心法理解 贪心法在解决问题的策略上目光短浅,只根据当前已有的信息就做出选择,而且一旦做出了选择,不管将来有什么结果,这个选择都不会改变.换言之,贪心法并不是从整体最优考虑,它所做出的选择只是在某种意义上的局部最优. 一句话:不求最优,只求可行解. 判断贪心法 对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解? 我们可以根据贪心法的2个重要的性质去证明:贪心选择性质和最优子结构性质. 1.贪心选择性质 什么叫贪心选择?从字义上就是贪心也就是目光短线,贪图眼前利益,在

从零开始学贪心算法

本文在写作过程中参考了大量资料,不能一一列举,还请见谅. 贪心算法的定义: 贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解.贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关. 解题的一般步骤是: 1.建立数学模型来描述问题: 2.把求解的问题分成若干个子问题: 3.对每一子问题求解,得到子问题的局部最优解: 4.把子