HDU 2604 Queuing (矩阵快速幂)

HDU 2604 Queuing (矩阵快速幂)

ACM

题目地址:HDU 2604 Queuing

题意:

n个人排队,f表示女,m表示男,包含子串‘fmf’和‘fff’的序列为O队列,否则为E队列,有多少个序列为E队列。

分析:

矩阵快速幂入门题。

下面引用巨巨解释:

用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1);

如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是

mmf的话那么前n-3可以找满足条件的即:f(n-3);如果是mff的话,再往前考虑一位的话只有mmff满足条件即:f(n-4)

所以f(n)=f(n-1)+f(n-3)+f(n-4),递推会跪,可用矩阵快速幂

构造一个矩阵:

矩阵快速幂和普通的快速幂原理是一样的,如果不懂可以先去补补快速幂。

代码:

/*
*  Author:      illuz <iilluzen[at]gmail.com>
*  Blog:        http://blog.csdn.net/hcbbt
*  File:        2604.cpp
*  Create Date: 2014-08-02 21:20:18
*  Descripton:  matrix
*/

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#include <cmath>
#include <cstdlib>
#define repf(i,a,b) for(int i=(a);i<=(b);i++)
typedef long long ll;

const int N = 0;
const int SIZE = 4;

int l, MOD;

struct Mat{
	ll v[SIZE][SIZE];	// value of matrix

	Mat() {
		memset(v, 0, sizeof(v));
	}

	void init(ll _v) {
		repf (i, 0, SIZE)
			v[i][i] = _v;
	}
};

Mat operator * (Mat a, Mat b) {
	Mat c;
	repf (i, 0, SIZE - 1) {
		repf (j, 0, SIZE - 1) {
			c.v[i][j] = 0;
			repf (k, 0, SIZE - 1) {
				c.v[i][j] += (a.v[i][k] * b.v[k][j]) % MOD;
				c.v[i][j] %= MOD;
			}
		}
	}
	return c;
}

Mat operator ^ (Mat a, ll k) {
	Mat c;
	c.init(1);
	while (k) {
		if (k&1) c = a * c;
		a = a * a;
		k >>= 1;
	}
	return c;
}

int main() {
	Mat a, b, c;
	// a
	a.v[0][0] = 9;
	a.v[1][0] = 6;
	a.v[2][0] = 4;
	a.v[3][0] = 2;

	// b
	b.v[0][0] = b.v[0][2] = b.v[0][3] = b.v[1][0] = b.v[2][1] = b.v[3][2] = 1;

	while (~scanf("%d%d", &l, &MOD)) {
		if (l == 0) {
			puts("0");
		} else if (l <= 4) {
			printf("%lld\n", a.v[4 - l][0] % MOD);
		} else {
			c = b ^ (l - 4);
			c = c * a;
			printf("%lld\n", c.v[0][0] % MOD);
		}
	}

	return 0;
}

HDU 2604 Queuing (矩阵快速幂),布布扣,bubuko.com

时间: 2024-12-25 02:05:12

HDU 2604 Queuing (矩阵快速幂)的相关文章

HDU - 2604 Queuing(矩阵快速幂或直接递推)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 题意:给出字符串长度L,并且字符串只由'f','m'构成,有2^L种情况,问在其中不包含'fmf','fff'的字符串有多少个. 1.直接递推,虽然过了,但是数据稍微大点就很可能TLE,因为代码上交上去耗时还是比较长的(感觉数据有点水)╭(′▽`)╭(′▽`)╯( 1 #include <iostream> 2 #include <cstdio> 3 #include <c

HDU 2604 Queuing 矩阵高速幂

QueuingTime Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2483    Accepted Submission(s): 1169 Problem Description Queues and Priority Queues are data structures which are known to most computer s

Hdu 4965(矩阵快速幂)

题目链接 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 87    Accepted Submission(s): 39 Problem Description One day, Alice and Bob felt bored again, Bob knows Alice is a

ZOJ 3690 &amp; HDU 3658 (矩阵快速幂+公式递推)

ZOJ 3690 题意: 有n个人和m个数和一个k,现在每个人可以选择一个数,如果相邻的两个人选择相同的数,那么这个数要大于k 求选择方案数. 思路: 打表推了很久的公式都没推出来什么可行解,好不容易有了想法结果WA到天荒地老也无法AC.. 于是学习了下正规的做法,恍然大悟. 这道题应该用递推 + 矩阵快速幂. 我们设F(n) = 有n个人,第n个人选择的数大于k的方案数: G(n) = 有n个人,第n个人选择的数小于等于k的方案数: 那么递推关系式即是: F(1)=m?k,G(1)=k F(n

HDU 1575 &amp;&amp; 1757 矩阵快速幂&amp;&amp;构造矩阵入门

HDU 1575 Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2912    Accepted Submission(s): 2167 Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input 数据的第一行是一个T,表示有T组数据.每组

hdu 6198(矩阵快速幂)

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 175    Accepted Submission(s): 119 暴力发现当4 12 33 88 232 和斐波那契数列对比  答案为 第2*k+3个数减1 直接用矩阵快速幂求的F[2*k+3]  然后减1 A=1,B=0; 然后矩阵快速幂2*k

HDU 1575-Tr A(矩阵快速幂)

Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3169    Accepted Submission(s): 2367 Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input 数据的第一行是一个T,表示有T组数据. 每组数据的第一行有

2017 ACM/ICPC Asia Regional Shenyang Online:number number number hdu 6198【矩阵快速幂】

Problem Description We define a sequence F: ? F0=0,F1=1;? Fn=Fn?1+Fn?2 (n≥2). Give you an integer k, if a positive number n can be expressed byn=Fa1+Fa2+...+Fak where 0≤a1≤a2≤?≤ak, this positive number is mjf?good. Otherwise, this positive number is 

Reading comprehension HDU - 4990 (矩阵快速幂 or 快速幂+等比数列)

for(i=1;i<=n;i++) { if(i&1)ans=(ans*2+1)%m; else ans=ans*2%m; } 给定n,m.让你用O(log(n))以下时间算出ans. 打表,推出 ans[i] = 2^(i-1) + f[i-2] 故 i奇数:ans[i] = 2^(i-1) + 2^(i-3) ... + 1; i偶数:ans[i] = 2^(i-1) + 2^(i-3) ... + 2; 故可以用等比数列求和公式. 公式涉及除法.我也没弄懂为啥不能用逆元,貌似说是啥逆元

hdu 5667 Sequence 矩阵快速幂

题目链接:hdu 5667 Sequence 思路:因为fn均为a的幂,所以: 这样我们就可以利用快速幂来计算了 注意: 矩阵要定义为long long,不仅仅因为会爆,还会无限超时 要对a%p==0特判,以为可能出现指数%(p-1)==0的情况,那么在快速幂的时候返回的结果就是1而不是0了 /************************************************************** Problem:hdu 5667 User: youmi Language: