如何成为大数据Spark高手

原文连接:http://blog.csdn.net/rlnLo2pNEfx9c/article/details/78778959

Spark是发源于美国加州大学伯克利分校AMPLab的集群计算平台,它立足于内存计算,性能超过Hadoop百倍,从多迭代批量处理出发,兼收并蓄数据仓库、流处理和图计算等多种计算范式,是罕见的全能选手。Spark采用一个统一的技术堆栈解决了云计算大数据的如流处理、图技术、机器学习、NoSQL查询等方面的所有核心问题,具有完善的生态系统,这直接奠定了其一统云计算大数据领域的霸主地位。

伴随Spark技术的普及推广,对专业人才的需求日益增加。Spark专业人才在未来也是炙手可热,轻而易举可以拿到百万的薪酬。而要想成为Spark高手,也需要一招一式,从内功练起:通常来讲需要经历以下阶段:

第一阶段:熟练的掌握Scala及java语言

  1. Spark框架是采用Scala语言编写的,精致而优雅。要想成为Spark高手,你就必须阅读Spark的源代码,就必须掌握Scala,;
  2. 虽然说现在的Spark可以采用多语言Java、Python等进行应用程序开发,但是最快速的和支持最好的开发API依然并将永远是Scala方式的API,所以你必须掌握Scala来编写复杂的和高性能的Spark分布式程序;
  3. 尤其要熟练掌握Scala的trait、apply、函数式编程、泛型、逆变与协变等;
  4. 掌握JAVA语言多线程,netty,rpc,ClassLoader,运行环境等(源码需要)。

第二阶段:精通Spark平台本身提供给开发者API

  1. 掌握Spark中面向RDD的开发模式部署模式:本地(调试),Standalone,yarn等 ,掌握各种transformation和action函数的使用;
  2. 掌握Spark中的宽依赖和窄依赖以及lineage机制;
  3. 掌握RDD的计算流程,例如Stage的划分、Spark应用程序提交给集群的基本过程和Worker节点基础的工作原理等
  4. 熟练掌握spark on yarn的机制原理及调优

第三阶段:深入Spark内核

此阶段主要是通过Spark框架的源码研读来深入Spark内核部分:

  1. 通过源码掌握Spark的任务提交过程;
  2. 通过源码掌握Spark集群的任务调度;
  3. 尤其要精通DAGScheduler、TaskScheduler,Driver和Executor节点内部的工作的每一步的细节;
  4. Driver和Executor的运行环境及RPC过程
  5. 缓存RDD,Checkpoint,Shuffle等缓存或者暂存垃圾清除机制
  6. 熟练掌握BlockManager,Broadcast,Accumulator,缓存等机制原理
  7. 熟练掌握Shuffle原理源码及调优

第四阶级:掌握基于Spark Streaming

Spark作为云计算大数据时代的集大成者,其中其组件spark Streaming在企业准实时处理也是基本是必备,所以作为大数据从业者熟练掌握也是必须且必要的:

  1. Spark Streaming是非常出色的实时流处理框架,要掌握其DStream、transformation和checkpoint等;
  2. 熟练掌握kafka 与spark Streaming结合的两种方式及调优方式
  3. 熟练掌握Structured Streaming原理及作用并且要掌握其余kafka结合
  4. 熟练掌握SparkStreaming的源码尤其是和kafka结合的两种方式的源码原理。
  5. 熟练掌握spark Streaming的web ui及各个指标,如:批次执行事件处理时间,调度延迟,待处理队列并且会根据这些指标调优。
  6. 会自定义监控系统

第五阶级:掌握基于Spark SQL

企业环境中也还是以数据仓库居多,鉴于大家对实时性要求比较高,那么spark sql就是我们作为仓库分析引擎的最爱(浪尖负责的两个集群都是计算分析一spark sql为主):

  1. spark sql要理解Dataset的概念及与RDD的区别,各种算子
  2. 要理解基于hive生成的永久表和没有hive的临时表的区别
  3. spark sql+hive metastore基本是标配,无论是sql的支持,还是永久表特性
  4. 要掌握存储格式及性能对比
  5. Spark sql也要熟悉它的优化器catalyst的工作原理。
  6. Spark Sql的dataset的链式计算原理,逻辑计划翻译成物理计划的源码(非必须,面试及企业中牵涉到sql源码调优的比较少)

第六阶级:掌握基于spark机器学习及图计算

企业环境使用spark作为机器学习及深度学习分析引擎的情况也是日渐增多,结合方式就很多了:

java系:

  1. spark ml/mllib spark自带的机器学习库,目前也逐步有开源的深度学习及nlp等框架( spaCy, CoreNLP, OpenNLP, Mallet, GATE, Weka, UIMA, nltk, gensim, Negex, word2vec, GloVe)
  2. 与DeepLearning4j目前用的也比较多的一种形式

python系:

  1. pyspark
  2. spark与TensorFlow结合

第七阶级:掌握spark相关生态边缘

企业中使用spark肯定也会涉及到spark的边缘生态,这里我们举几个常用的软件框架:

  1. hadoop系列:kafka,hdfs,yarn
  2. 输入源及结果输出,主要是:mysql/redis/hbase/mongod
  3. 内存加速的框架redis,Alluxio
  4. es、solr

第八阶级:做商业级别的Spark项目

通过一个完整的具有代表性的Spark项目来贯穿Spark的方方面面,包括项目的架构设计、用到的技术的剖析、开发实现、运维等,完整掌握其中的每一个阶段和细节,这样就可以让您以后可以从容面对绝大多数Spark项目。

第九阶级:提供Spark解决方案

    1. 彻底掌握Spark框架源码的每一个细节;
    2. 根据不同的业务场景的需要提供Spark在不同场景的下的解决方案;
    3. 根据实际需要,在Spark框架基础上进行二次开发,打造自己的Spark框架;

原文地址:https://www.cnblogs.com/chenghaohao/p/8157116.html

时间: 2024-11-08 20:11:53

如何成为大数据Spark高手的相关文章

如何成为云计算大数据Spark高手

Spark是发源于美国加州大学伯克利分校AMPLab的集群计算平台,它立足于内存计算,性能超过Hadoop百倍,从多迭代批量处理出发,兼收并蓄数据仓库.流处理和图计算等多种计算范式,是罕见的全能选手.Spark采用一个统一的技术堆栈解决了云计算大数据的如流处理.图技术.机器学习.NoSQL查询等方面的所有核心问题,具有完善的生态系统,这直接奠定了其一统云计算大数据领域的霸主地位. 伴随Spark技术的普及推广,对专业人才的需求日益增加.Spark专业人才在未来也是炙手可热,轻而易举可以拿到百万的

王家林 大数据Spark超经典视频链接全集[转]

压缩过的大数据Spark蘑菇云行动前置课程视频百度云分享链接 链接:http://pan.baidu.com/s/1cFqjQu SCALA专辑 Scala深入浅出经典视频 链接:http://pan.baidu.com/s/1i4Gh3Xb 密码:25jc DT大数据梦工厂大数据spark蘑菇云Scala语言全集(持续更新中) http://www.tudou.com/plcover/rd3LTMjBpZA/ 1 Spark视频王家林第1课:大数据时代的“黄金”语言Scala 2 Spark视

Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈与熟练的掌握Scala语言【大数据Spark

Spark GraphX宝刀出鞘,图文并茂研习图计算秘笈 大数据的概念与应用,正随着智能手机.平板电脑的快速流行而日渐普及,大数据中图的并行化处理一直是一个非常热门的话题.图计算正在被广泛地应用于社交网络.电子商务,地图等领域.对于图计算的两个核心问题:图存储模式和图计算模型,Spark GraphX给出了近乎完美的答案, 而Spark GraphX作为图计算领域的屠龙宝刀,对Pregel  API的支持更是让Spark GraphX如虎添翼.Spark GraphX可以轻而易举的完成基于度分布

大数据Spark企业级实战

大数据Spark企业级实战 2015-02-12 14:42:46  来自: 我爱我家 大数据Spark企业级实战的评论     5 <大数据Spark企业级实战>从零起步,完全从企业处理大数据业务场景的角度出发,基于实战代码来组织内容,对于一名大数据爱好者来说,<大数据Spark企业级实战>内容可以帮助您一站式地完成从零起步到进行Spark企业级开发所需要的全部核心内容和实战需要.  在阅读此书时可以参考以下资料:    王家林<Spark把云计算大数据速度提高100倍以上

以慕课网日志分析为例 进入大数据 Spark SQL 的世界

详情请交流  QQ  709639943 01.以慕课网日志分析为例 进入大数据 Spark SQL 的世界 02.漫谈spring cloud分布式服务架构 03.Spring Cloud微服务实战视频课程 04.漫谈spring cloud 与 spring boot 基础架构 05.Java秒杀系统方案优化 高性能高并发实战 06.Java深入微服务原理改造房产销售平台 07.快速上手Linux 玩转典型应用 08.快速上手Ionic3 多平台开发企业级问答社区 09.Java Sprin

2016年大数据Spark“蘑菇云”行动之flume整合spark streaming

近期,听了王家林老师的2016年大数据Spark"蘑菇云"行动,需要将flume,kafka和Spark streaming进行整合. 感觉一时难以上手,还是先从简单着手吧:我的思路是这样的,flume产生数据,然后输出到spark streaming,flume的源数据是netcat(地址:localhost,端口22222),输出是avro(地址:localhost,端口是11111).Spark streaming的处理是直接输出有几个events. 一.配置文件 Flume 配

2016年大数据Spark“蘑菇云”行动之spark streaming消费flume采集的kafka数据Directf方式

王家林老师的课程:2016年大数据Spark"蘑菇云"行动之spark streaming消费flume采集的kafka数据Directf方式作业.     一.基本背景 Spark-Streaming获取kafka数据的两种方式Receiver与Direct的方式,本文介绍Direct的方式.具体的流程是这样的: 1.Direct方式是直接连接到kafka的节点上获取数据了. 2.基于Direct的方式:周期性地查询Kafka,来获得每个topic+partition的最新的offs

CK2255-以慕课网日志分析为例 进入大数据 Spark SQL 的世界

新年伊始,学习要趁早,点滴记录,学习就是进步! 随笔背景:在很多时候,很多入门不久的朋友都会问我:我是从其他语言转到程序开发的,有没有一些基础性的资料给我们学习学习呢,你的框架感觉一下太大了,希望有个循序渐进的教程或者视频来学习就好了.对于学习有困难不知道如何提升自己可以加扣:1225462853  获取资料. 下载地址:https://pan.baidu.com/s/1hsU5EIS 以慕课网日志分析为例 进入大数据 Spark SQL 的世界 本课程以"慕课网日志分析"这一大数据应

2016年大数据Spark“蘑菇云”行动代码学习之AdClickedStreamingStats模块分析

    系统背景:用户使用终端设备(IPAD.手机.浏览器)等登录系统,系统采用js脚本发送用户信息和广告点击信息到后台日志,进入flume监控,通过kafka消息中间件传输数据,由Spark Streaming消费后将信息存储到后台.本模块主要就是实现将kafka发送的信息进行过滤,动态更新黑名单,生成有效的广告点击数据,形成广告点击趋势,将相关信息通过数据库连接池写入数据库MySql.     实现思路:由于kafka传输的广告点击数据中有一些是无效数据,需要根据一定的规则进行过滤(本方案采