[BZOJ 3994]约数个数和 莫比乌斯反演

自己是在是弱,看了半天才看懂题解

写公式实在是麻烦,搬家一份:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#define N 101000
#define pos(i,a,b) for(int i=(a);i<=(b);i++)
using namespace std;
#define LL long long
int t,n,m;
int notprime[N],prime[N],mu[N];
LL f[N];
void get_mu(){
	notprime[1]=1;mu[1]=1;
	pos(i,2,N-10){
		if(!notprime[i]){
			prime[++prime[0]]=i;
			mu[i]=-1;
		}
		for(int j=1;j<=prime[0]&&prime[j]*i<=N-10;j++){
			notprime[prime[j]*i]=1;
			if(i%prime[j]==0){
				mu[i*prime[j]]=0;
				break;
			}
			mu[i*prime[j]]=-mu[i];
		}
	}
	pos(i,1,N-10) mu[i]+=mu[i-1];
	pos(i,1,N-10){
		int last(0);
		for(int j=1;j<=i;j=last+1){
			last=i/(i/j);
			f[i]+=(i/j)*1ll*(last-(j-1));
		}
	}
}
LL get_ans(){
	int last(0);
	LL res(0);
	for(int i=1;i<=n;i=last+1){
		last=min(n/(n/i),m/(m/i));
		res+=f[n/i]*f[m/i]*(mu[last]-mu[i-1]);
	}
	return res;
}
int main(){
	scanf("%d",&t);
	get_mu();
	while(t--){
		scanf("%d%d",&n,&m);if(n>m) swap(n,m);
		printf("%lld\n",get_ans());
	}
	return 0;
}

  

时间: 2024-10-13 12:03:33

[BZOJ 3994]约数个数和 莫比乌斯反演的相关文章

【bzoj3994】[SDOI2015]约数个数和 莫比乌斯反演

题目描述 设d(x)为x的约数个数,给定N.M,求   输入 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. 输出 T行,每行一个整数,表示你所求的答案. 样例输入 2 7 4 5 6 样例输出 110 121 题解 莫比乌斯反演 根据 bzoj4176 推出的结论, 那么就有: 预处理mu及其前缀和. 由于要处理多组询问,所以需要用O(n√n)的时间预处理出f,然后对于每组询问分块来求. #include <cstdio> #incl

[SDOI2015] 约数个数和 (莫比乌斯反演)

[SDOI2015]约数个数和 题目描述 设d(x)为x的约数个数,给定N.M,求 \(\sum^N_{i=1}\sum^M_{j=1}d(ij)\) 输入输出格式 输入格式: 输入文件包含多组测试数据.第一行,一个整数T,表示测试数据的组数.接下来的T行,每行两个整数N.M. 输出格式: T行,每行一个整数,表示你所求的答案. 输入输出样例 输入样例#1: 2 7 4 5 6 输出样例#1: 110 121 说明 \(1<=N, M<=50000\) \(1<=T<=50000\

[SDOI2015][bzoj3994] 约数个数和 [莫比乌斯反演]

题面: 传送门 思路: 首先,我们需要证明一个结论:d(i*j)等于sigma(gcd(x,y)==1),其中x为i的约数,y为j的约数 对于nm的每一个质因子pi分别考虑,设n = pi^ai + n',m = pi^bi + m' 那么显然质因子pi对d(nm)的贡献为(ai+bi+1) 同理,考虑右边的式子,我们发现质数pi对右侧做的贡献仍然是(ai+bi+1),即如下的(x,y) (pi^ai,1) (pi^(ai-1),1) ..... (1,1) .....(1,pi^(bi-1))

luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演

题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\sigma_0(n)\)表示\(n\)的约数个数 第一个公式是莫比乌斯函数的基本性质,至于第二个公式的证明,可以考虑\(i*j\)中每一个质因子对 \(\sigma_0(i*j)\) 的贡献,对于一个质因子 \(p\) ,若它在 \(i\) 中的次数为 \(k_1\) ,它在 \(j\) 中的次数为

BZOJ 3994 Sdoi2015 约数个数和 莫比乌斯反演

题目大意:求∑ni=1∑mj=1d(ij) 首先我们有一个很神的结论: ∑ni=1∑mj=1d(ij)=∑ni=1∑mj=1?ni??mj?[gcd(i,j)==1] 这个结论是怎么来的呢?我们可以先证明这个: d(nm)=∑i|n∑j|m1?1[gcd(i,j)==1] 显然这个式子的前缀和就是上面的式子 现在我们来证明这个式子是对的 我们分开讨论每一个质数p对答案的贡献 不妨设n=n′?pk1,m=m′?pk2 那么左式中p的贡献显然是k1+k2+1 右式中只考虑p的话,满足要求的数对(i,

BZOJ 1114 Number theory(莫比乌斯反演+预处理)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=71738 题意:给你一个整数序列a1, a2, a3, ... , an.求gcd(ai, aj) = 1 且 i < j的对数. 思路:利用莫比乌斯反演很快就能得到公式,但是求解时我们要知道序列中1, 2, 3, ... , max(a1, a2, ... , an)的倍数各是多少.我们用num[i]=k,来表示序列中有k个数是i的倍数,那么这部分对结果的影响是m

BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 思路:本题使用莫比乌斯反演要利用分块来优化,那么每次询问的复杂度降为2*sqrt(n)+2*sqrt(m).注意到 n/i ,在连续的k区间内存在,n/i=n/(i+k).所有对这连续的区间可以一次求出

bzoj 3309 DZY Loves Math - 莫比乌斯反演 - 线性筛

对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b). Input 第一行一个数T,表示询问数. 接下来T行,每行两个数a,b,表示一个询问. Output 对于每一个询问,输出一行一个非负整数作为回答. Sample Input 4 7558588 9653114 6514903 445

BZOJ 3434 Wc2014 时空穿梭 莫比乌斯反演

题目大意:给定一个n维空间,需要在这n维空间内选取c个共线的点,要求这c个点每维坐标均单调递增,第i维坐标是整数且在[1,mi] 为了表述方便令||代表中间东西的方案数 顺便设第i维坐标为ai 但是这样不简洁因此用x表示第1维坐标,y表示第二维坐标,θ表示第n维坐标 貌似我的方法SB了?不管了总之自己能推出来真是太好了- - 尼玛BZOJ渣评测机卡常数- - 明明UOJ5s就全过了的说- - #include <cstdio> #include <cstring> #include